

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

MiTek USA, Inc. 6904 Parke East Blvd.

Tampa, FL 33610-4115

RE: 413220 - 348 Shore Drive E.

Site Information:

Customer Info: Deeb Family Homes Project Name: New Residence Model: Lot/Block: Subdivision: Address: 348 Shore Drive E. City: Oldsmar State: Florida

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2017/TPI2014 Wind Code: ASCE 7-10 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 145 mph Floor Load: 118.0 psf

This package includes 168 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T16796479	01A	4/17/19	18	T16796496	04A	4/17/19
2	T16796480	01B	4/17/19	19	T16796497	04B	4/17/19
3	T16796481	01C	4/17/19	20	T16796498	04C	4/17/19
4	T16796482	01D	4/17/19	21	T16796499	04D	4/17/19
5	T16796483	01E	4/17/19	22	T16796500	04E	4/17/19
6	T16796484	01F	4/17/19	23	T16796501	04F	4/17/19
7	T16796485	01G	4/17/19	24	T16796502	04G	4/17/19
8	T16796486	02A	4/17/19	25	T16796503	04H	4/17/19
9	T16796487	02B	4/17/19	26	T16796504	041	4/17/19
10	T16796488	02C	4/17/19	27	T16796505	04J	4/17/19
11	T16796489	02D	4/17/19	28	T16796506	04K	4/17/19
12	T16796490	02E	4/17/19	29	T16796507	04L	4/17/19
13	T16796491	02F	4/17/19	30	T16796508	04M	4/17/19
14	T16796492	03A	4/17/19	31	T16796509	05A	4/17/19
15	T16796493	03B	4/17/19	32	T16796510	05B	4/17/19
16	T16796494	03C	4/17/19	33	T16796511	05C	4/17/19
17	T16796495	03D	4/17/19	34	T16796512	06A	4/17/19

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Tibbetts Lumber Company-Lutz.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

April 17,2019

Velez, Joaquin

RE: 413220 - 348 Shore Drive E.

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Deeb Family Homes Project Name: New Residence Model: Lot/Block: Subdivision: Address: 348 Shore Drive E. City: Oldsmar State: Florida

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
35	T16796513	06B	4/17/19	78	T16796556	F10	4/17/19
36	T16796514	06C	4/17/19	79	T16796557	F11	4/17/19
37	T16796515	06D	4/17/19	80	T16796558	F12	4/17/19
38	T16796516	07A	4/17/19	81	T16796559	F13	4/17/19
39	T16796517	07B	4/17/19	82	T16796560	F14	4/17/19
40	T16796518	07C	4/17/19	83	T16796561	F15	4/17/19
41	T16796519	07D	4/17/19	84	T16796562	F16	4/17/19
42	T16796520	08A	4/17/19	85	T16796563	F17	4/17/19
43	T16796521	08B	4/17/19	86	T16796564	F18	4/17/19
44	T16796522	08C	4/17/19	87	T16796565	F19	4/17/19
45	T16796523	08D	4/17/19	88	T16796566	F20	4/17/19
46	T16796524	08E	4/17/19	89	T16796567	F21	4/17/19
47	T16796525	08F	4/17/19	90	T16796568	F22	4/17/19
48	T16796526	09A	4/17/19	91	T16796569	F23	4/17/19
49	T16796527	09B	4/17/19	92	T16796570	F24	4/17/19
50	T16796528	10A	4/17/19	93	T16796571	F25	4/17/19
51	T16796529	10B	4/17/19	94	T16796572	F26	4/17/19
52	T16796530	10C	4/17/19	95	T16796573	F27	4/17/19
53	T16796531	11A	4/17/19	96	T16796574	F28	4/17/19
54	T16796532	11B	4/17/19	97	T16796575	F29	4/17/19
55	T16796533	11C	4/17/19	98	T16796576	F30	4/17/19
56	T16796534	11D	4/17/19	99	T16796577	F31	4/17/19
57	T16796535	11E	4/17/19	100	T16796578	F32	4/17/19
58	T16796536	12A	4/17/19	101	T16796579	F32A	4/17/19
59	T16796537	12B	4/17/19	102	T16796580	F33	4/17/19
60	T16796538	12C	4/17/19	103	T16796581	F34	4/17/19
61	T16796539	13A	4/17/19	104	T16796582	F35	4/17/19
62	T16796540	13B	4/17/19	105	T16796583	F36	4/17/19
63	T16796541	14A	4/17/19	106	T16796584	F37	4/17/19
64	T16796542	14B	4/17/19	107	T16796585	F38	4/17/19
65	T16796543	15A	4/17/19	108	T16796586	F39	4/17/19
66	T16796544	16A	4/17/19	109	T16796587	F40	4/17/19
67	T16796545	16B	4/17/19	110	T16796588	F41	4/17/19
68	T16796546	16C	4/17/19	111	T16796589	F42	4/17/19
69	T16796547	F1	4/17/19	112	T16796590	F43	4/17/19
70	T16796548	F2	4/17/19	113	T16796591	F44	4/17/19
71	T16796549	F3	4/17/19	114	T16796592	FG1	4/17/19
72	T16796550	F4	4/17/19	115	T16796593	FG2	4/17/19
73	T16796551	F5	4/17/19	116	T16796594	FG3	4/17/19
74	T16796552	F6	4/17/19	117	T16796595	FG4	4/17/19
75	T16796553	F7	4/17/19	118	T16796596	FG5	4/17/19
76	T16796554	F8	4/17/19	119	T16796597	FG6	4/17/19
77	T16796555	F9	4/17/19	120	T16796598	FL1	4/17/19

RE: 413220 - 348 Shore Drive E.

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Deeb Family Homes Project Name: New Residence Model: Lot/Block: Subdivision: Address: 348 Shore Drive E. City: Oldsmar State: Florida

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
121	T16796599	FL2	4/17/19	164	T16796642	V8	4/17/19
122	T16796600	FL3	4/17/19	165	T16796643	V9	4/17/19
123	T16796601	J1	4/17/19	166	T16796644	V10	4/17/19
124	T16796602	J1A	4/17/19	167	T16796645	V11	4/17/19
125	T16796603	J1AU	4/17/19	168	T16796646	V12	4/17/19
126	T16796604	J1E	4/17/19		- I	1	•
127	T16796605	J1U	4/17/19	1			
128	T16796606	J3	4/17/19	1			
129	T16796607	J3A	4/17/19	1			
130	T16796608	J3AU	4/17/19	1			
131	T16796609	J3BU	4/17/19	1			
132	T16796610	J3E	4/17/19	1			
133	T16796611	J3U	4/17/19	1			
134	T16796612	J5	4/17/19	1			
135	T16796613	J5A	4/17/19	1			
136	T16796614	J5AU	4/17/19	1			
137	T16796615	J5B	4/17/19	1			
138	T16796616	J5BU	4/17/19	1			
139	T16796617	J5CU	4/17/19	1			
140	T16796618	J5DU	4/17/19	1			
141	T16796619	J5E	4/17/19	1			
142	T16796620	J5EU	4/17/19	1			
143	T16796621	J5U	4/17/19	1			
144	T16796622	J7	4/17/19	1			
145	T16796623	J7A	4/17/19	1			
146	T16796624	J7AU	4/17/19	1			
147	T16796625	J7U	4/17/19	1			
148	T16796626	K3	4/17/19	1			
149	T16796627	K3U	4/17/19	1			
150	T16796628	K5AU	4/17/19	1			
151	T16796629	K5E	4/17/19	1			
152	T16796630	K5U	4/17/19	1			
153	T16796631	K7	4/17/19	1			
154	T16796632	K7A	4/17/19	1			
155	T16796633	K7AU	4/17/19	1			
156	T16796634	K7U	4/17/19	1			
157	T16796635	V1	4/17/19	1			
158	T16796636	V2	4/17/19	1			
159	T16796637	V3	4/17/19	1			
160	T16796638	V4	4/17/19	1			
161	T16796639	V5	4/17/19	1			
162	T16796640	V6	4/17/19	1			
163	T16796641	V7	4/17/19	1			
103	110/90041	V /	4/17/19				

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
413220	014		1		T16796479
13220			'	3	Job Reference (optional)
TIBBETTS LUMBER CO LLC, LU	TZ, FL		•	8.2	40 s Mar 23 2019 MiTek Industries, Inc. Wed Apr 17 09:02:07 2019 Page 2
			ID:LTHF4	4EcV9tavz	xn_hS4OfoznULZ-oDxvarGJADDIbvsuBDr7V0tUt16P?6_ALMiXebzPtlk

NOTES

8) Standard loadcase(s) has been removed. Building designer must review loads shown to verify that they are correct for the intended use of the truss.

9) Use USP THD48 (With 28-16d nails into Girder & 16-10d nails into Truss) or equivalent at 1-9-8 from the left end to connect truss(es) F43 (1 ply 2x4 SP) to back face of bottom chord.

- 10) Use USP THD46 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 3-9-8 from the left end to 24-9-8 to connect truss(es) F43 (1 ply 2x4 SP), F44 (1 ply 2x4 SP) to back face of bottom chord.
- 11) Use USP THD26-2 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent at 26-9-12 from the left end to connect truss(es) FG5 (2 ply 2x6 SP) to back face of bottom chord

12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S)

1) Dead + Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-8=-170, 8-9=-70, 9-10=-70, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-326 5=-742 14=-425(B) 8=-389 13=-661(B) 22=-320 23=-391 24=-472 25=-472 26=-472 27=-472 28=-1585 29=-742 30=-742 31=-1051 32=-323 33=-326 34=-1108(B) 35=-1108(B) 36=-1108(B) 37=-1108(B) 38=-425(B) 39=-425(B) 40=-425(B) 41=-425(B) 42=-425(B) 43=-425(B) 44=-425(B) 45=-425(B) 45=-425 2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-8=-150, 8-9=-60, 9-10=-60, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-290 5=-660 14=-634(B) 8=-346 13=-654(B) 22=-284 23=-348 24=-420 25=-420 26=-420 27=-420 28=-1409 29=-660 30=-660 31=-934 32=-287 33=-290 34=-1542(B) 35=-1542(B) 36=-1542(B) 37=-1542(B) 38=-634(B) 39=-634(B) 40=-634(B) 41=-634(B) 42=-634(B) 43=-634(B) 44=-634(B) 45=-634(B) 45=-634 3) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90

Uniform Loads (plf)

Vert: 1-8=-90, 8-9=-30, 9-10=-30, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-181 5=-412 14=-704(B) 8=-216 13=-651(B) 22=-178 23=-217 24=-262 25=-262 26=-262 27=-262 28=-881 29=-412 30=-412 31=-584 32=-179 33=-181 34=-1686(B) 35=-1686(B) 36=-1686(B) 37=-1686(B) 38=-704(B) 39=-704(B) 40=-704(B) 41=-704(B) 42=-704(B) 43=-704(B) 44=-704(B) 45=-704(B) 45=-704 4) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-8=-170, 8-9=-70, 9-10=-30, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-326 5=-742 14=-425(B) 8=-389 13=-661(B) 22=-320 23=-391 24=-472 25=-472 26=-472 27=-472 28=-1585 29=-742 30=-742 31=-1051 32=-323 33=-326 34=-1108(B) 35=-1108(B) 36=-1108(B) 37=-1108(B) 38=-425(B) 39=-425(B) 40=-425(B) 41=-425(B) 42=-425(B) 43=-425(B) 44=-425(B) 45=-425(B) 45=-425 5) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-8=-170, 8-9=-70, 9-10=-70, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-326 5=-742 14=-425(B) 8=-389 13=-661(B) 22=-320 23=-391 24=-472 25=-472 26=-472 27=-472 28=-1585 29=-742 30=-742 31=-1051 32=-323 33=-326 34=-1108(B) 35=-1108(B) 36=-1108(B) 37=-1108(B) 38=-425(B) 39=-425(B) 40=-425(B) 41=-425(B) 42=-425(B) 43=-425(B) 44=-425(B) 45=-425(B) 45=-425 6) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-8=-150, 8-9=-60, 9-10=-30, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-290 5=-660 14=-634(B) 8=-346 13=-654(B) 22=-284 23=-348 24=-420 25=-420 26=-420 27=-420 28=-1409 29=-660 30=-660 31=-934 32=-287 33=-290 34=-1542(B) 35=-1542(B) 36=-1542(B) 37=-1542(B) 38=-634(B) 39=-634(B) 40=-634(B) 41=-634(B) 42=-634(B) 43=-634(B) 44=-634(B) 45=-634(B) 45=-634 7) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-8=-150, 8-9=-60, 9-10=-60, 11-20=-20

Concentrated Loads (lb)

Vert: 1=-290 5=-660 14=-634(B) 8=-346 13=-654(B) 22=-284 23=-348 24=-420 25=-420 26=-420 27=-420 28=-1409 29=-660 30=-660 31=-934 32=-287 33=-290 34=-1542(B) 35=-1542(B) 36=-1542(B) 37=-1542(B) 38=-634(B) 39=-634(B) 40=-634(B)

41=-634(B) 42=-634(B) 43=-634(B) 44=-634(B) 45=-634(B)

	ets (A, f)	[2.0-5-4,0-2-0], [5.0-2-6,0	-3-0], [5.0-5-4,	,0-2-0], [11.0-	1-12,0-0-0],	[12.0-0-0,0-1-12], [12.0-5-4,0-5-0]			1	
OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.25	TC	0.65	Vert(LL)	-0.08 10-11	>999	360	MT20	244/190
CDL	15.0	Lumber DOL	1.25	BC	0.54	Vert(CT)	-0.18 10-11	>999	240		
CLL	0.0 *	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.04 8	n/a	n/a		
CDL	10.0	Code FBC2017/TI	PI2014	Matri	k-MS	Wind(LL)	0.09 11-13	>999	240	Weight: 232 lb	FT = 10%
LUMBER- BRACING-											
		D No 2				D Structur	d wood	abaathing di	actly applied or 2.6.9 a	o purlino	

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing	directly applied or 3-6-8 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.	
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied	d or 6-7-5 oc bracing.
		WEBS	1 Row at midpt	2-13, 1-15
REACTIONS.	(lb/size) 15=1408/Mechanical, 8=1408/Mechanical			

Max Horz 15=-480(LC 10) Max Uplift 15=-677(LC 8), 8=-626(LC 12) Max Grav 15=1456(LC 19), 8=1408(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-721/530, 2-3=-1370/916, 3-4=-1550/1023, 4-5=-1550/1023, 5-6=-1395/854, 6-7=-1117/654, 1-15=-1445/874, 7-8=-1366/828

BOT CHORD 14-15=-408/503, 13-14=-386/716, 11-13=-794/1484, 10-11=-675/1219, 9-10=-577/953 2-14=-997/795, 2-13=-722/1253, 3-13=-741/614, 3-11=-235/331, 4-11=-491/429, WEBS 5-11=-319/610, 5-10=-252/209, 6-10=-179/521, 6-9=-761/511, 1-14=-772/1300, 7-9=-674/1215

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-1-12 to 7-1-15, Interior(1) 7-1-15 to 23-3-0, Exterior(2) 23-3-0 to 27-3-4, Interior(1) 27-3-4 to 31-5-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=677, 8=626.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

	7-6-	9	14-9-0	20-6-14	26-3-0	31-11-2		37-9-0	44-9-0	
Plate O	-۲-۵-۲ 	9 [1:0-0-0,0-0-	<u>/-2-7</u> 1], [4:0-6-0,0-2-8], [5:0-2-8,0	5-9-14 -3-0], [8:0-6-0,0-2-8], [10	5-8-2 Edge,0-3-8], [12:0	<u>5-8-2</u> 0-2-4,0-3-0]		5-9-14	7-0-0	
LOADIN TCLL TCDL BCLL BCDL	NG (psf) 20.0 15.0 0.0 * 10.0	SPAC Plate Lumbe Rep S Code	ING- 2-0-0 Grip DOL 1.25 er DOL 1.25 tress Incr YES FBC2017/TPI2014	CSI. TC 0.74 BC 0.82 WB 0.89 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.22 14 -0.51 13-14 0.16 10 0.34 13-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 275 lb	GRIP 244/190 FT = 10%
LUMBE TOP CH BOT CH WEBS	UMBER- OP CHORD 2x4 SP No.2 *Except* 8-9: 2x4 SP M 31 BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. OT CHORD 2x4 SP No.2 *Except* 1-15: 2x4 SP M 31 BOT CHORD Rigid ceiling directly applied or 4-4-3 oc bracing. WEBS 1 Row at midpt 5-13, 8-12, 9-11 //EBS 2x4 SP No.2 A 2007/Machemical									
REACT	REACTIONS. (lb/size) 1=2007/Mechanical, 10=2007/Mechanical Max Horz 1=371(LC 11) Max Uplift 1=-898(LC 12), 10=-902(LC 12)									
FORCE	S. (lb) - Max. HORD 1-2=- 6-7=-	Comp./Max. 4104/2159, 2 3162/1910, 7	Ten All forces 250 (lb) or l -3=-3872/2073, 3-4=-3270/ -8=-2667/1657, 8-9=-2018/	ess except when shown. 1866, 4-5=-3276/1954, 5- 1178, 9-10=-1941/1173	·6=-3162/1910,					
BOT CH	IORD 1-17=	-2213/3776,	16-17=-2001/3438, 14-16=-	1675/3021, 13-14=-1851	/3372,					
WEBS	12-13=-1514/2746, 11-12=-982/1785 NEBS 2-17=-267/294, 3-17=-112/394, 3-16=-599/456, 4-16=-245/616, 4-14=-334/685, 5-14=-422/321, 6-13=-374/310, 7-13=-421/806, 7-12=-1057/692, 8-12=-821/1540, 8-11=-771/575, 9-11=-1021/1956									
NOTES 1) Unba 2) Wind II; Ex	NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=5ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-9-0, Exterior(2) 14-9-0 to									

18-11-15, Interior(1) 18-11-15 to 37-9-0, Exterior(2) 37-9-0 to 41-11-15, Interior(1) 41-11-15 to 44-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

3) Provide adequate drainage to prevent water ponding.
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=898, 10=902.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 17,2019

6-6-9	12-9-0	19-6-14	26-3-0	32-11-2	39-9-	0 44	-9-0		
6-6-9	6-2-7	6-9-14	6-8-2	6-8-2	6-9-1	4 5-	0-0		
Plate Offsets (X,Y)	[1:0-0-0,0-0-1], [3:0-6-0,0-2-8], [5:0-2-8,0)-3-0], [7:0-6-0,0-2-8], [11	:0-2-8,0-3-0]						
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.97 BC 0.94 WB 0.74	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.24 12-13 >999 -0.56 12-13 >955 0.17 9 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190		
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MS	Wind(LL)	0.37 12-13 >999	240	Weight: 258 lb	FT = 10%		
JUMBER- Image: Bracing- IOP CHORD 2x4 SP M 31 *Except* 7-8,5-7: 2x4 SP No.2 TOP CHORD 30T CHORD 2x4 SP No.2 *Except* 1-14: 2x4 SP M 31 Bot CHORD WEBS 2x4 SP No.2 REACTIONS. (Ib/size) 1=2007/Mechanical, 9=2007/Mechanical Max Horz 1=343(LC 11) Max Uplift 1=-898(LC 12), 9=-902(LC 12)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-4075/2151, 2-3=-3475/1936, 3-4=-3727/2180, 4-5=-3727/2180, 5-6=-3657/2137, 6-7=-2911/1755, 7-8=-1749/1036, 8-9=-1964/1169 BOT CHORD 1-16=-2207/3692, 15-16=-2207/3692, 13-15=-1815/3165, 12-13=-2063/3720, 11-12=-1678/2996, 10-11=-874/1537 WEBS 2-15=-610/441, 3-15=-127/483, 3-13=-485/980, 4-13=-511/441, 5-12=-519/428, 6-12=-518/980, 6-11=-1171/787, 7-11=-1056/1964, 7-10=-995/692, 8-10=-1015/1884									
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; II; Exp D; Encl., GC 16-11-15 Interior(1	re loads have been considered for this dea Vult=145mph (3-second gust) Vasd=112n cpi=0.18; MWFRS (directional) and C-C E 16-11-15 to 39-9-0 Exterior(2) 39-9-0 t	sign. nph; TCDL=4.2psf; BCDL xterior(2) 0-0-0 to 3-0-0, I 43-11-15_Interior(1) 43-	=6.0psf; h=25ft; B= nterior(1) 3-0-0 to 11-15 to 44-7-4 zo	=45ft; L=24ft; eave=5ft; 12-9-0, Exterior(2) 12-9 ne: cantilever left and ri	Cat. -0 to	NINI JOAQU	IN VELES		

exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=898, 9=902.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 17,2019

L	5-6-9	10-9-0	17-7-10	24-4-9	9 J 3'	1-1-7	37-10-6	44-9-0		
Г	5-6-9	5-2-7	6-10-10	6-8-14	4 6.	8-14	6-8-14	6-10-10	,	
Plate O	ffsets (X,Y)	[1:0-0-0,0-0-1], [3:0-6-0,0)-2-8], [6:0-3-0,Ec	dge], [12:0-2-8,0-3-0], [1	4:0-3-0,Edge]					
LOADIN TCLL TCDL BCLL BCDL	NG (psf) 20.0 15.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/T	2-0-0 1.25 1.25 YES PI2014	CSI. TC 0.83 BC 0.72 WB 0.95 Matrix-MS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0. Wind(LL) 0.	in (loc) <i>I/</i> 30 13-14 > 69 13-14 > 19 10 46 13-14 >	/defl L/d 999 360 776 240 n/a n/a 999 240	PLATES MT20 Weight: 249 lb	GRIP 244/190 FT = 10%	
LUMBE TOP CH BOT CH WEBS	UMBER- OP CHORD BRACING- TOP CHORD 3-6: 2x4 SP M 31 TOP CHORD SOT CHORD 2x4 SP M 31 IOT CHORD 2x4 SP M 31 *Except* 10-12: 2x4 SP No.2 VEBS 2x4 SP No.2 VEBS 12007/Mechanical, 10=2007/Mechanical									
REACT	REACTIONS. (Ib/size) 1=2007/Mechanical, 10=2007/Mechanical Max Horz 1=371(LC 11) Max Uplift 1=-896(LC 12), 10=-967(LC 9)									
FORCE TOP CH	S. (lb) - Max. HORD 1-2=- 7-8=-	Comp./Max. Ten All for 4087/2141, 2-3=-3652/19 3768/2123	rces 250 (lb) or le 991, 3-4=-4252/24	ess except when shown. 403, 4-5=-4418/2469, 5-	7=-4418/2469,					
BOT CH	HORD 1-16= 12-13 2-15=	=-2361/3636, 15-16=-236 3=-2146/3768, 11-12=-13 =-449/351_3-15=-102/41(1/3636, 14-15=-2 51/2330, 10-11=-) 3-14=-664/124!	2051/3259, 13-14=-2520, -1351/2330 5 4-14=-619/485 5-13=	/4270, 467/393					
NOTES	NOTES-									
II; Ex 14-1 and f	II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-9-0, Exterior(2) 10-9-0 to 14-11-15, Interior(1) 14-11-15 to 44-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DQL=1.60 plate grip DQL=1.60									

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=896, 10=967.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 17,2019

L	4-6-9	8-9-0	14-10-3	20-9-9	26-9-0	32-8-7	38-7-13	44-9	-0
-	4-6-9	4-2-7	6-1-3	5-11-7	5-11-7	5-11-7	5-11-7	6-1-	3
Plate Of	fsets (X,Y)	[1:0-0-0,0-0-1], [3:	0-6-0,0-2-8], [5:0-3-8,0	-3-0], [8:0-2-4,0-3-4], [1	2:0-3-0,Edge]				
LOADIN TCLL TCDL BCLL	IG (psf) 20.0 15.0 0.0 *	SPACING- Plate Grip I Lumber DC Rep Stress	2-0-0 DOL 1.25 DL 1.25 Incr YES	CSI. TC 0.81 BC 0.67 WB 0.96	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.41 13-14 >999 -0.93 13-14 >578 0.22 10 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0	Code FBC	2017/TPI2014	Matrix-MS	Wind(LL)	0.62 13-14 >861	240	Weight: 246 lb	FI = 10%
LUMBER- TOP CHORD 2x4 SP No.2 *Except* 3-5: 2x4 SP M 31 BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied or 2-1-10 oc purlins, except end verticals. BOT CHORD 2x4 SP M 31 *Except* 10-12: 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 4-6-0 oc bracing. WEBS 2x4 SP No.2 WEBS 1 Row at midpt 8-10 REACTIONS. (lb/size) 1=2007/Mechanical, 10=2007/Mechanical Max Horz 1=2007/Mechanical, 10=2007/Mechanical Max Uplift 1=-897(LC 12), 10=-962(LC 9) Here and the seccept of the sec									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-4077/2174, 2-3=-3804/2086, 3-4=-4820/2691, 4-5=-4820/2691, 5-6=-5200/2850, 6-7=-5200/2850, 7-8=-4209/2321 BOT CHORD 1-17=-2323/3633, 16-17=-2323/3633, 15-16=-2103/3425, 14-15=-3031/5388, 13-14=-3030/5390, 12-13=-2356/4246, 11-12=-1467/2595, 10-11=-1464/2599 WEBS 2-16=-272/251, 3-16=-77/328, 3-15=-899/1691, 4-15=-443/396, 5-15=-696/333, 6-13=-422/354, 7-13=-652/1165, 7-12=-1069/702, 8-12=-1074/2005, 8-10=-3114/1671									
 NOTES- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=5ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0 to 3-0-0, Interior(1) 3-0 to 8-9-0, Exterior(2) 8-9-0 to 12-11-15, Interior(1) 12-11-15 to 44-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Provide adequate drainage to prevent water ponding. 3) All plates are MT20 plates unless otherwise indicated. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 									

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=897, 10=962.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

April 17,2019

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					Т	16796485
413220	01G	Flat Girder	1	2		
				2	Job Reference (optional)	
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	3.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:10:47 2019 F	Page 2

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:10:47 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-xwi?4KE2oxR4C8yyrEO_b4O9k06M6znxYUX7phzQ8lc

NOTES-

(a) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 133 lb down and 193 lb up at 1-9-12, 133 lb down and 193 lb up at 3-9-12, 133 lb down and 193 lb up at 5-9-12, 133 lb down and 193 lb up at 7-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 21-9-12, 133 lb down and 193 lb up at 13-9-12, 133 lb down and 193 lb up at 25-9-12, 133 lb down and 193 lb up at 27-9-12, 133 lb down and 193 lb up at 31-9-12, 133 lb down and 193 lb up at 33-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 133 lb down and 193 lb up at 37-9-12, 88 lb down at 19-9-12, 88 lb down at 37-9-12, 80 lb down at 37-9-12, 80 lb down at 37-9-12, 80 lb

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-10=-70, 11-20=-20

Concentrated Loads (lb)

Vert: 18=-62(F) 3=-129(F) 16=-62(F) 5=-129(F) 7=-129(F) 14=-62(F) 12=-62(F) 9=-129(F) 21=-129(F) 22=-129(F) 23=-129(F) 24=-129(F) 25=-129(F) 27=-129(F) 28=-129(F) 30=-129(F) 30=-129(F) 31=-129(F) 32=-129(F) 33=-129(F) 33=-129(F) 35=-129(F) 35=-129(F) 36=-129(F) 36=-129(F) 36=-129(F) 38=-129(F) 38=-129(F) 39=-139(F) 40=-62(F) 41=-62(F) 42=-62(F) 43=-62(F) 44=-62(F) 44=-62(F) 45=-62(F) 46=-62(F) 48=-62(F) 49=-62(F) 50=-62(F) 51=-62(F) 52=-62(F) 53=-62(F) 54=-62(F) 55=-62(F) 56=-62(F) 55=-62(F) 55=-62(F)

to 7-9-7, Interior(1) 7-9-7 to 23-2-8, Exterior(2) 23-2-8 to 23-8-12 zone; cantilever left and right exposed; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=538.8=674.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

	s		CSI	DEEL	in (loc) I/dofl	1/d		GRIP
Plate Offsets (X,Y)-	- [2:0-5-4	,0-2-0], [5:0-0-0,0-1-12], [5:0-2-12	,0-3-0], [10:0-4-0,0-3-0]					
	1-10-8	5-6-14	5-5-2		5-5-2	1	5-6-14	
	1-10-8	/-5-6	12-10-8		18-3-10		23-10-8	

LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.94 BC 0.34 WB 0.94 Matrix-MS	DEFL. ir Vert(LL) -0.04 Vert(CT) -0.09 Horz(CT) 0.02 Wind(LL) 0.06	n (loc) I/d 10-11 >9 10-11 >9 10-11 >9 8 1 9-10 >9	lefi L/d 99 360 99 240 n/a n/a 99 240	PLATES MT20 Weight: 189 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.2 P No.2 P No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural w except end Rigid ceiling 1 Row at mi	rood sheathing dired verticals. g directly applied or idpt 7-8	ctly applied or 5-8-12 of 6-7-2 oc bracing.	oc purlins,
REACTIONS. (Ib/siz Max H Max U Max 0	te) 8=1061/Mechanical, 13=1061/Mecha Horz 13=477(LC 9) Jplift 8=-684(LC 9), 13=-603(LC 8) Grav 8=1158(LC 17), 13=1115(LC 18)	nical					
FORCES. (Ib) - Max TOP CHORD 1-2= 7-8=	. Comp./Max. Ten All forces 250 (lb) or le -456/372, 2-3=-898/550, 3-4=-990/596, 4- -1054/701, 1-13=-1107/650	ess except when shown. 6=-990/596, 6-7=-790/523,					
BOT CHORD 12-1 WEBS 2-12	3=-524/504, 11-12=-604/671, 10-11=-804/ =-852/712, 2-11=-572/960, 3-11=-570/507	1038, 9-10=-569/778 , 3-10=-173/263, 4-10=-359/	/328.				

WEBS 6-10=-339/452, 6-9=-735/650, 7-9=-707/1165, 1-12=-636/1029

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-1-12 to 6-1-7, Interior(1) 6-1-7 to 23-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=684, 13=603.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

L	6-6-	-9 12-9-0	18-9-14	24-9-0		30-8-2	36-9-0		
	6-6	-9 6-2-7	6-0-14	5-11-2	I	5-11-2	6-0-14		
Plate Offsets	s (X,Y) [[1:0-0-0,0-0-5], [3:0-6-0,0-2-8], [11:0-2-8,0	0-3-0]						
LOADING (p TCLL 20 TCDL 13 BCLL BCDL 10	psf) 0.0 5.0 0.0 * 0.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.74 BC 0.78 WB 0.85 Matrix-MS	DEFL. ir Vert(LL) -0.16 Vert(CT) -0.36 Horz(CT) 0.12 Wind(LL) 0.24	n (loc) 1/ 5 12 > 5 12-14 > 2 9 4 12 >	/defl L/d 999 360 999 240 n/a n/a 999 240	PLATES MT20 Weight: 216 lb	GRIP 244/190 FT = 10%	
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BOT CHORDS. (lb/size) 1=1647/Mechanical, 9=1647/Mechanical Max Horz 1=439(LC 11) Max Uplift 1=-732(LC 12), 9=-855(LC 9)									
FORCES. (TOP CHORE BOT CHORE WEBS	(lb) - Max. () 1-2=-3 7-8=-1) 1-15= 10-11 2-14= 5-11=	Comp./Max. Ten All forces 250 (lb) or le 3266/1682, 2-3=-2631/1456, 3-4=-2552/1 1411/922, 8-9=-1593/972 1979/2886, 14-15=-1979/2886, 12-14=- =-903/1411 -658/465, 3-14=-140/477, 3-12=-199/399 -718/561, 7-11=-697/1174, 7-10=-1290/8	ess except when shown. 536, 4-5=-2552/1536, 5-7 1566/2312, 11-12=-1392/2 1, 4-12=-444/394, 5-12=-32 198, 8-10=-1132/1987	=-2236/1356, 2236, 28/450,					
NOTES- 1) Wind: ASC	CE 7-10; Vi	ult=145mph (3-second gust) Vasd=112m	ph; TCDL=4.2psf; BCDL=(6.0psf; h=25ft; B=45ft;	L=24ft; eave	e=5ft; Cat.		uun.	

) Wind: ASCE 7-10; Vult=145mpr (3-second gust) Vasd=112mpr; TCDL=4.2psr; BCDL=6.0psr; h=25f; B=45f; L=24f; eave=5f; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-9-0, Exterior(2) 12-9-0 to 16-11-15, Interior(1) 16-11-15 to 36-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members

and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=732, 9=855.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

5-6-9	10-9-0	17-3-14	23-9-0	30-2-2	36-9-0				
5-6-9	5-2-7	6-6-14	6-5-2	6-5-2	6-6-14				
Plate Offsets (X,Y)	[1:0-0-0,0-0-5], [3:0-6-0,0-2-8], [13:0-2-8]	0-3-0]							
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.89 BC 0.84 WB 0.82 Matrix-MS	DEFL. in Vert(LL) -0.19 Vert(CT) -0.44 Horz(CT) 0.13 Wind(LL) 0.29	(loc) I/defl L/d 13 >999 360 2-13 >999 240 9 n/a n/a 2-13 >999 240	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 10%			
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 SOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 REACTIONS. (Ib/size) 1=1647/Mechanical, 9=1647/Mechanical Max Horz 1=371(LC 11) Max Uplift 1=-734(LC 12), 9=-848(LC 9)									
FORCES. (lb) - Max. TOP CHORD 1-2=- 7-8=- 7-8=- BOT CHORD 1-15= 10-12 10-12 WEBS 2-14= 5-12= 5-12=	Comp./Max. Ten All forces 250 (lb) or l 3289/1724, 2-3=-2812/1555, 3-4=-3007/ 1782/1090, 8-9=-1587/962 1972/2914, 14-15=-1972/2914, 13-14=- !=-1079/1782 491/375, 3-14=-110/411, 3-13=-356/660 429/355, 7-12=-715/1236, 7-10=-1258/6	ess except when shown. 1755, 4-5=-2750/1601, 5- 1640/2495, 12-13=-1846/ 5, 4-13=-286/301, 4-12=-3 372, 8-10=-1253/2243	7=-2750/1601, 3015, 337/263,						
NOTES- 1) Wind: ASCE 7-10; V II; Exp D; Encl., GCp	ult=145mph (3-second gust) Vasd=112m vi=0.18; MWFRS (directional) and C-C Ex	nph; TCDL=4.2psf; BCDL= (terior(2) 0-0-0 to 3-0-0, Ir	=6.0psf; h=25ft; B=45ft; L=; hterior(1) 3-0-0 to 10-9-0, E	24ft; eave=5ft; Cat. xterior(2) 10-9-0 to		111111			

14-11-15, Interior(1) 14-11-15 to 36-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=734, 9=848.

68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 17,2019

	4-6-9	8-9-0	15-9-14		22-9-0			29-8-2		36-9-0	
Plate 0	Offsets (X,Y)	[1:0-0-0,0-0-5], [3:0-6-0,0-2-4	8], [5:0-2-8,0-3-0], [9	:0-2-12,0-3-0], [1	1:0-4-0,0-3-0]			0-11-2		7-0-14	
LOAD TCLL TCDL BCLL BCDL	NG (psf) 20.0 15.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TPI2	2-0-0 C 1.25 T 1.25 E YES V 014 M	: SI. IC 0.81 IC 0.95 IVB 0.85 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.54 0.14 0.35	(loc) 10-11 10-11 8 10-11	l/defl >999 >812 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 10%
LUMB TOP C BOT C WEBS	ER- HORD 2x4 SP 3-5: 2x HORD 2x4 SP 2x4 SP	P No.2 *Except* 4 SP M 31 P No.2 P No.2	BRACING- TOP CHORI BOT CHORI WEBS	כ כ	Structur except e Rigid ce 1 Row a	ral wood s end vertic eiling direc at midpt	sheathing dire als. ctly applied or 7-{	ectly applied or 2-2-0 or 2-2-0 oc bracing. 9	c purlins,		
REAC	TIONS. (Ib/size Max H Max U	e) 1=1647/Mechanical, 8= orz 1=304(LC 11) plift 1=-735(LC 12), 8=-842(1647/Mechanical LC 9)								
FORC TOP C	E S. (lb) - Max. HORD 1-2=-	Comp./Max. Ten All forces 3291/1761, 2-3=-2989/1652, 2287/1226, 7 8=, 1582/051	s 250 (lb) or less exc , 3-4=-3636/2071, 4-	ept when shown. 5=-3636/2071, 5-	6=-3469/1955,						

- BOT CHORD 1-13=-1946/2921, 12-13=-1946/2921, 11-12=-1702/2675, 10-11=-1990/3469,
- 9-10=-1337/2309 WEBS 2-12=-306/277, 3-12=-71/353, 3-11=-598/1115, 4-11=-529/462, 5-10=-562/473, 6-10=-763/1355, 6-9=-1227/849, 7-9=-1442/2636

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=5ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-9-0, Exterior(2) 8-9-0 to 12-11-15, Interior(1) 12-11-15 to 36-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=735, 8=842.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

5-4-4	10-6-12	15-9-4 2	0-11-12	26-2-4	31-4-12	36-9-	0
5-4-4	5-2-8	5-2-8	5-2-8	5-2-8	5-2-8	5-4-4	4 '
Plate Offsets (X,Y)	[3:0-4-0,0-4-8], [6:0-4-0,0-4-8], [9:0-1-12	,0-4-0], [12:0-4-0,0-4-8], [[·]	14:0-4-0,0-4-8], [16:0·	1-12,0-4-0]			
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.33 BC 0.79 WB 0.68 Matrix-MS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0. Wind(LL) 0.	in (loc) l/de 22 12-13 >99 51 12-13 >84 11 9 n/ 35 12-13 >99	fl L/d 9 360 7 240 a n/a 9 240	PLATES MT20 Weight: 530 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 1-16,8-	No.2 No.2 No.2 *Except* 9: 2x6 SP No.2		BRACING- TOP CHORD BOT CHORD	Structural woo except end ve Rigid ceiling o	od sheathing direc erticals. lirectly applied or	ctly applied or 5-1-5 o 8-2-15 oc bracing.	c purlins,
REACTIONS. (Ib/size Max H Max U	e) 16=3120/Mechanical, 9=2809/Mech orz 16=211(LC 5) plift 16=-1454(LC 4), 9=-1339(LC 5)	anical					
FORCES. (lb) - Max. TOP CHORD 1-16= 6-7=- 6-7=- BOT CHORD 15-16 11-12 2-16= WEBS 2-16= 4-13= 7-11=	Comp./Max. Ten All forces 250 (lb) or 294/241, 2-3=-7392/3373, 3-4=-8771/4 6869/3181, 8-9=-287/235 =-2071/4563, 14-15=-2071/4563, 13-14: 2=-3248/6959, 10-11=-1970/4080, 9-10=: -5201/2398, 2-15=0/422, 2-14=-1470/33 -578/543, 5-13=-179/353, 5-12=-753/51 =-1453/3243, 7-10=0/357, 7-9=-4658/219	less except when shown. 007, 4-5=-8771/4007, 5-6 =-3344/7529, 12-13=-382 -1970/4080 15, 3-14=-1460/892, 3-13 8, 6-12=-762/1744, 6-11= 12	==-8432/3875, 3/8467, 3=-645/1455, 1487/844,				
NOTES- 1) 2-ply truss to be con Top chords connecte Bottom chords connected as 2) All loads are conside ply connections have 3) Wind: ASCE 7-10; V II; Exp D; Encl., GCP DOL=1.60 plate grip DOL=1.60 plate grip 4) Provide adequate dr 5) This truss has been will fit between the b will fit between the consider 7) Refer to girder(s) for 8) Provide mechanical 16=1454, 9=1339.	nected together with 10d (0.131"x3") nai ed as follows: 2x6 - 2 rows staggered at (ected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except if e been provided to distribute only loads r 'ult=145mph (3-second gust) Vasd=112n bi=0.18; MWFRS (directional); cantilever DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord liven n designed for a live load of 20.0psf on th ottom chord and any other members. truss to truss connections. connection (by others) of truss to bearing	is as follows: D-9-0 oc. at 0-9-0 oc. noted as front (F) or back toted as (F) or (B), unless nph; TCDL=4.2psf; BCDL= left and right exposed ; er e load nonconcurrent with ne bottom chord in all area g plate capable of withstar	: (B) face in the LOAD otherwise indicated. =6.0psf; h=25ft; B=45 nd vertical left and rigi any other live loads. as where a rectangle : nding 100 lb uplift at ju	CASE(S) section ft; L=24ft; eave=t tt exposed; Lumt 3-6-0 tall by 2-0-0 bint(s) except (jt=	n. Ply to 5ft; Cat. Jer 9 wide Ib)	PP. STA	IN VELE ENSE 68182 EFOF HUDA OF HUDA NALEN

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					-	Г16796491
413220	02F	Flat Girder	1	2		
				_	Job Reference (optional)	
TIBBETTS LUMBER COLLO			ç	240 c Do	c 6 2018 MiTek Industries Inc. Tue Apr 16 12:10:54 2019	Page 2

NOTES-

ID:LTHF4EcV9tayzxn_hS4OfoznULZ-EGeeYjKR85J4YD_JmC0dNZAJZqPOFAUz93k?ZnzQ8IV

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 133 lb down and 193 lb up at 1-9-12, 133 lb down and 193 lb up at 3-9-12, 133 lb down and 193 lb up at 5-9-12, 133 lb down and 193 lb up at 19-912, 133 lb down and 193 lb up at 11-9-12, 133 lb down and 143 lb up at 23-9-12, 105 lb down and 143 lb up at 23-9-12, 105 lb down and 143 lb up at 23-9-12, 105 lb down and 143 lb up at 23-9-12, 105 lb down and 143 lb up at 23-9-12, 105 lb down and 143 lb up at 33-9-12, and 104 lb down and 143 lb up at 35-9-12 on top chord, and 88 lb down at 1-9-12, 88 lb down at 3-9-12, 88 lb down at 13-9-12, 63 lb down at 23-9-12, 63 lb down at 33-9-12, and 65 lb down at 35-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-8=-70, 9-16=-20

Concentrated Loads (lb)

Vert: 13=-62(B) 4=-129(B) 6=-77(B) 17=-129(B) 18=-129(B) 19=-129(B) 20=-129(B) 21=-129(B) 22=-129(B) 24=-129(B) 25=-129(B) 25=-129(B

· · · · ·	4-5-3 8-8-2 12-11	<u>-0 13-ρ-8 18-9-0</u>	24-7-0	30-11-6	37-6-0
	4-5-3 ' 4-2-14 ' 4-2-1	4 0-1'-8 5-8-8	5-10-0	6-4-6	6-6-10
Plate Offsets (X,Y)	[5:0-6-0,0-2-8], [7:0-6-0,0-2-8], [14:0-3-0,	0-4-4], [15:0-3-8,0-4-12]			
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. TC 0.44 BC 0.43 WB 0.59 Matrix-MS	DEFL. in (loc) Vert(LL) 0.07 15-16 Vert(CT) -0.10 15-16 Horz(CT) 0.01 14	l/defl L/d >999 240 >999 240 n/a n/a	PLATES GRIP MT20 244/190 Weight: 476 lb FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP 9-12: 2 WEBS 2x4 SP REACTIONS. (lb/size Max H	No.2 DSS *Except* x6 SP No.2 No.2 2) 9=848/0-3-8, 2=1499/0-5-8, 14=744 orz 2=219(LC 7)	1/0-5-8	BRACING- TOP CHORD Structur BOT CHORD Rigid ce 6-0-0 of	al wood sheathing directly illing directly applied or 10 bracing: 13-14.	v applied or 6-0-0 oc purlins. -0-0 oc bracing, Except:
Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- BOT CHORD 2-16= 11-13 WEBS 3-16= 5-13= 8-10=	plift 9=-380(LC 8), 2=-901(LC 8), 14=-40 rav 9=872(LC 18), 2=1551(LC 17), 14=7 Comp./Max. Ten All forces 250 (lb) or l 2764/1330, 3-4=-1620/1126, 4-5=-953/2 1098/879, 8-9=-1463/869 1320/2447, 15-16=-1320/2447, 14-15=- 3=-515/895, 10-11=-600/1303, 9-10=-600 298/800, 3-15=-1158/552, 4-15=-2167/- -875/1822, 6-13=-474/340, 7-13=-1216/c -0/323	00(LC 8) 441(LC 1) ess except when shown. 107, 5-6=-767/955, 6-7=-7 1124/1425, 13-14=-1919 /1303 4111, 4-14=-4353/2421, 5 512, 7-11=-221/634, 8-11	767/955, /1194, ;-14=-2491/1264, =-1054/657,		
NOTES- 1) 2-ply truss to be con Top chords connect Bottom chords connect by connections have 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V 11; Exp D; Encl., GCF DOL=1.60 plate grip 5) Provide adequate dr 6) This truss has been will fit between the b 8) Provide mechanical 9=380, 2=901, 14=4 9) Use USP THD26 (W 7-0-12 from the left e 10) Fill all nail holes wf	nected together with 10d (0.131"x3") nail ed as follows: 2x4 - 1 row at 0-9-0 oc. ected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except if a been provided to distribute only loads na loads have been considered for this des ult=145mph (3-second gust) Vasd=112m j=0.18; MWFRS (directional); cantilever DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on th ottom chord and any other members. connection (by others) of truss to bearing 000. (ith 18-16d nails into Girder & 12-10d x 1- end to 13-0-12 to connect truss(es) to fro- here hanger is in contact with lumber.	s as follows: at 0-4-0 oc. noted as front (F) or back oted as (F) or (B), unless ign. uph; TCDL=4.2psf; BCDL left and right exposed ; er load nonconcurrent with the bottom chord in all area plate capable of withstar 1/2 nails into Truss) or ec nt face of bottom chord.	(B) face in the LOAD CASE(S) s otherwise indicated. =6.0psf; h=25ft; B=45ft; L=24ft; e id vertical left and right exposed; any other live loads. as where a rectangle 3-6-0 tall by nding 100 lb uplift at joint(s) exce quivalent spaced at 2-0-0 oc max	section. Ply to ave=5ft; Cat. Lumber v 2-0-0 wide pt (jt=lb) . starting at	AQUIN VEL CENSE No 68182 BUSINE OF STATE OF ORIDACIN STATE OF USA ORIDACIN STATE OF ORIDACIN STATE OF ORIDACINACINACINACINACINACINACINACINACINACIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

MiTek

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					T1	6796492
413220	03A	Hip Girder	1	2		
				_	Job Reference (optional)	
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:10:55 2019 Pa	age 2
		ID:LTI	HF4EcV9ta	ayzxn hS4	OfoznULZ-iSB0I3K3vPRxANZVJvXswmjTdErK d27NjTY6Dz0	Q8IU

NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 201 lb down and 203 lb up at 31-11-4, and 189 lb down and 168 lb up at 33-11-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-5=-70, 5-7=-70, 7-9=-70, 17-20=-20

Concentrated Loads (lb)

Vert: 14=-1177(F) 23=-150 24=-149 25=-2397(F) 26=-1188(F) 27=-1177(F)

6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=432, 19=810, 12=676.

> Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

> > April 17,2019

Scale = 1:70.4

6904 Parke East Blvd. Tampa, FL 36610

Plate Offsets (X,Y) [3:0-2-3,0-0-2], [4:0-10-0,0-2-8], [6:0-1-8,0-2-0], [11:0-6-0,0-2-8], [18:0-4-0,0-4-8], [2:0-1-8,0-2-0], [1:0-6-0,0-2-8], [1:0-6-0,0-2-8], [2:0-1-8,0-2-0]	[20:0-3-8,0-4-12], [23:0-2-8,0-3-0]
--	-------------------------------------

1 1010 0110010 (71,17)		,0 2 0], [11:0 0 0,0 2 0], [10.0 1 0,0 1 0], [20.0 0	0,0 1 12], [20.0 1	2 0,0 0 0]		
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. TC 0.76 BC 0.72 WB 0.81 Matrix-MS	DEFL. Vert(LL) 0.2 Vert(CT) -0.2 Horz(CT) 0.0	in (loc) l/defl 3 17-18 >999 3 17 >999 7 13 n/a	L/d 240 240 n/a	PLATES MT20 MT20HS Weight: 236 lb	GRIP 244/190 187/143 FT = 10%
LUMBER- TOP CHORD 2x4 SP 4-9: 2x4 BOT CHORD 2x6 SP 3-26,5- WEBS 2x4 SP	No.2 *Except* 4 SP M 31 No.2 *Except* 21: 2x4 SP No.2 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood Rigid ceiling dir 6-0-0 oc bracin 1 Row at midpt	l sheathing dir ectly applied c g: 21-23 4	ectly applied or 2-7-6 or or 4-4-3 oc bracing. Exc -23, 6-19	c purlins. cept:
REACTIONS. (Ib/size Max He Max U Max G	 2=441/0-5-8, 20=4406/0-5-8, 13=177 2=-135(LC 23) plift 2=-364(LC 25), 20=-2404(LC 8), 13=173 rav 2=446(LC 17), 20=4406(LC 1), 13=173 	73/0-3-8 1488(LC 8) 801(LC 18)					
FORCES. (lb) - Max. TOP CHORD 3-4=-	Comp./Max. Ten All forces 250 (lb) or l 241/285, 4-5=-1021/2436, 5-6=-1052/24	ess except when shown. 93, 6-7=-510/989, 7-8=-2	262/2058,				
8-10= BOT CHORD 3-26= 19-20 15-16 WEBS 4-24-	-2262/2058, 10-11=-3006/2447, 11-12=- 0/267, 3-24=-191/385, 23-24=-159/388, =-2506/1154, 18-19=-887/510, 17-18=-2 =-1898/2703, 13-15=-1898/2703 -0/667, 4-23=-265/2055, 20-23=-2705/12	3011/2268, 12-13=-3033 21-23=-254/162, 5-23=-4 151/3006, 16-17=-1840/2 90 6-202511/1479 6-1	3/2252 121/321, 2725, 19–-2303/3589				
7-19= 11-16	-2060/1388, 7-18=-1383/2282, 8-18=-57 =-223/579, 12-16=-216/387, 12-15=-253	/111 //111 //111	11-17=-415/358,			In AQU	IN VEL
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp D; Encl., GCp exposed; Lumber DO 3) Provide adequate dr 4) All plates are MT20 p 5) This truss has been 6) * This truss has been 6) * This truss has been 6) * This truss has been 9) Provide mechanical 2=364, 20=2404, 13: 8) Hanger(s) or other cr 7-0-0, 128 lb down ad down and 204 lb up up at 22-5-4, 139 lb and 283 lb down and 11-2-8, 103 lb down lb down at 24-5-4, 1 The design/selection Continued on page 2	loads have been considered for this des ult=145mph (3-second gust) Vasd=112m i=0.18; MWFRS (directional); cantilever DL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. lolates unless otherwise indicated. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on th ottom chord and any other members. connection (by others) of truss to bearing =1488. onnection device(s) shall be provided sut nd 178 lb up at 9-0-12, 128 lb down and at 17-0-12, 139 lb down and 204 lb up at down and 204 lb up at 24-5-4, 139 lb do 4 412 lb up at 30-6-0 on top chord, and 4 at 15-0-12, 103 lb down at 17-0-12, 103 03 lb down at 26-5-4, and 103 lb down at of such connection device(s) is the resp	ign. hph; TCDL=4.2psf; BCDL left and right exposed ; er load nonconcurrent with he bottom chord in all area g plate capable of withsta fficient to support concen 178 lb up at 11-0-12, 13 t 18-9-0, 139 lb down an hym and 204 lb up at 26- 147 lb down and 87 lb up 3 lb down at 18-9-0, 103 at 28-5-4, and 521 lb dow onsibility of others.	=6.0psf; h=25ft; B=45ft nd vertical left and right any other live loads. as where a rectangle 3- nding 100 lb uplift at joi trated load(s) 215 lb do 39 lb down and 204 lb u d 204 lb up at 20-5-4, 5-4, and 139 lb down at at 7-0-0, 89 lb down at lb down at 20-5-4, 103 vn and 26 lb up at 30-5	; L=24ft; eave=5ft exposed; porch r -6-0 tall by 2-0-0 v nt(s) except (jt=lb wn and 325 lb up p at 15-0-12, 13 139 lb down and 2 139 lb down and 2 -9-0-12, 89 lb do lb down at 22-5 -4 on bottom cho	; Cat. ight vide) at 9 lb 204 lb 8-5-4, wn at 4, 103 rd.	Daquin Velez PE MiTek USA, Inc. F 6904 Parke East E Date: April	E N S 68 182 0 F R 1 D A O F NAL ENGINE No.68182 1 Cert 6634 3Vd. Tampa FL 33610 17,2019
Continued on page 2 WARNING Verify de Design valid for use only a truss system. Before us building design. Bracing is always required for sta fabrication, storage, deliv Safety Information ava	sign parameters and READ NOTES ON THIS AND with MiTek® connectors. This design is based only se, the building designer must verify the applicability indicated is to prevent buckling of individual truss w bility and to prevent collapse with possible personal ery, erection and bracing of trusses and truss syste liable from Truss Plate Institute, 218 N. Lee Street,	INCLUDED MITEK REFERENC: upon parameters shown, and is of design parameters and prop eb and/or chord members only. injury and property damage. Fr ms, see ANS/TPI Q Suite 312, Alexandria, VA 2231	E PAGE MII-7473 rev. 10/03/2 s for an individual building com erly incorporate this design in Additional temporary and pe or general guidance regarding uality Criteria, DSB-89 and E 4.	015 BEFORE USE. aponent, not to the overall rmanent bracing the BCSI Building Compo	onent	6904 Parke East B Tampa, FL 36610	Blvd.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796495
413220	03D	HIP GIRDER	1	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	, LUTZ, FL		8	.240 s Dec	6 2018 MiTek Industries, Inc. Tue Apr 16 12:10:59 2019 Page 2

ID:LTHF4EcV9tayzxn_hS4OfoznULZ-aERXbQNZzdxNf_tGYIco4cu4hr8hwOdilLRmF?zQ8lQ

NOTES-

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-70, 3-4=-70, 4-11=-70, 11-14=-70, 26-27=-20, 25-26=-20, 3-23=-20, 21-22=-20, 21-30=-20

Concentrated Loads (lb)

Vert: 4=-148(B) 11=-236(B) 24=-333(B) 16=-245(B) 33=-117(B) 35=-117(B) 36=-137(B) 37=-137(B) 38=-137(B) 39=-137(B) 40=-137(B) 41=-137(B) 42=-137(B) 44=-137(B) 45=-76(B) 46=-76(B) 47=-54(B) 48=-54(B) 49=-54(B) 50=-54(B) 51=-54(B) 52=-54(B) 53=-54(B) 54=-54(B) 54=-54(

		3-8-10	7-1-12	7-5-12	12-7-10	18-1-8		1	21-6-8	24-5-8	24 ₁ 9 ₁ 8 26-9-0	
		3-8-10	3-5-2	0-4-0	5-1-14	5-5-14		1	3-5-0	2-11-0	0-4-0 1-11-8	
Plate Off	sets (X,Y)	[1:0-0-0,0-2-5], [5:0-2-8,	,0-3-0], [6:0)-5-4,0-2-0], [1	3:0-5-8,0-2-4], [′	17:0-5-12,0-2-8]						
LOADING	G (psf)	SPACING-	2-0-0	с	SI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	T	0.56	Vert(LL)	-0.10	18	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	В	C 0.71	Vert(CT)	-0.25 1	6-17	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	- N	B 0.95	Horz(CT)	0.11	10	n/a	n/a		
BCDL	10.0	Code FBC2017/	TPI2014	M	atrix-MS	Wind(LL)	0.15	18	>999	240	Weight: 204 lb	FT = 10%

LUMBER-		BRACING-			
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 3-4-8 oc purlins,		
BOT CHORD	2x4 SP No.2		except end verticals.		
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 4-5-0 oc bracing. Except:		
SLIDER	Left 2x4 SP No.2 1-6-0		10-0-0 oc bracing: 17-19, 11-13		
		WEBS	1 Row at midpt 6-14, 9-10		
REACTIONS.	(lb/size) 1=1205/Mechanical, 10=1209/0-5-8				

Max Horz 1=530(I C 11) Max Uplift 1=-523(LC 12), 10=-539(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2094/1091, 3-4=-2757/1446, 4-5=-1850/993, 5-6=-1090/739, 6-7=-727/627, 7-8=-793/624, 8-9=-480/394, 9-10=-1170/799 BOT CHORD 1-20=-1344/1951, 4-17=-235/507, 16-17=-1800/2648, 15-16=-1209/1714, 14-15=-745/1043, 13-14=-351/465, 8-13=-954/766 WEBS 3-20=-595/477, 17-20=-1290/1876, 3-17=-446/678, 4-16=-1025/648, 5-16=-186/571, 5-15=-951/638, 6-15=-374/725, 6-14=-678/461, 8-14=-423/688, 9-13=-767/1070,

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 18-1-8, Exterior(2) 18-1-8 to 25-9-7, Interior(1) 25-9-7 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

10-13 = -266/297

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=523, 10=539.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Plate Offsets (X,	<u>3-8-10</u> <u>3-8-10</u>) [1:0-0-0,0-2-5], [5:0	7-1-12 7 3-5-2 0 -2-8,0-3-0], [7:0-5-	- <u>5-12 11-11-6</u>)-4-0 4-5-10 4,0-2-0], [13:0-5-8,0-2-4],	16-9-0 4-9-10 [17:0-5-12,0-2-8]	<u>22-11-0</u> 6-2-0	24-9-8 <u>24-5-8</u> <u>26-9-0</u> <u>1-6-8</u> 0/4-0 <u>1-11-8</u>
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip D	DOL 1.25	TC 0.66	Vert(LL) -0.	10 18 >999	360 MT20 244/190
TCDL 15.0	Lumber DOI	L 1.25	BC 0.71	Vert(CT) -0.	23 16-17 >999	240

Horz(CT)

0.10

10

n/a

n/a

BCDL 10.	.0	Code FBC2017/TPI2014	Matrix-MS	Wind(LL)	0.15	18	>999	240	Weight: 199 lb	FT = 10%
LUMBER-				BRACING-						
TOP CHORD	2x4 SP I	No.2		TOP CHORE) S	tructur	al wood	sheathing dire	ectly applied or 3-4-7 or	c purlins,
BOT CHORD	2x4 SP I	No.2			e	xcept (end verti	cals.		
WEBS	2x4 SP I	No.2		BOT CHORE) R	ligid ce	iling dire	ectly applied o	or 4-4-9 oc bracing. Exc	cept:
SLIDER	Left 2x4	SP No.2 1-6-0			1(0-0-0 0	oc bracin	g: 17-19, 11-1	13	
				WEBS	1	Row a	at midpt	- 9-	-10	
REACTIONS.	(lb/size)	1=1205/Mechanical, 10=1209/0-5-8								

Max Horz 1=511(I C 11) Max Uplift 1=-523(LC 12), 10=-539(LC 12)

Rep Stress Incr

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2095/1093, 3-4=-2754/1480, 4-5=-1923/1042, 5-6=-1253/806, 6-7=-1075/788, 7-8=-683/551, 8-9=-479/408, 9-10=-1168/823 BOT CHORD 1-20=-1365/1945, 4-17=-244/505, 16-17=-1826/2626, 15-16=-1280/1770, 14-15=-509/692, 13-14=-348/453, 8-13=-990/728

YES

W/R

0 78

WEBS 3-20=-594/487, 17-20=-1314/1869, 3-17=-454/682, 4-16=-961/610, 5-16=-210/535, 5-15=-851/592, 7-15=-538/792, 7-14=-667/546, 8-14=-512/869, 9-13=-762/1036, 10-13=-272/275

NOTES-

BCLL

0.0

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 16-9-0, Exterior(2) 16-9-0 to 20-11-15, Interior(1) 20-11-15 to 22-11-0, Exterior(2) 22-11-0 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=523, 10=539.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Plate Offsets ((X,Y)	[14:0-5-8,0-2-4], [18:0-5-12,0-2-8]				
LOADING (ps TCLL 20 TCDL 15 BCLL 0	sf) 1.0 5.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.56 BC 0.72 WB 0.85	DEFL. Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.1	in (loc) I/defl L/d 0 15-16 >999 360 3 17-18 >999 240 1 11 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10	0.0	Code FBC2017/TPI2014	Matrix-MS	Wind(LL) 0.1	4 19 >999 240	Weight: 206 lb $FI = 10\%$
LUMBER- TOP CHORD BOT CHORD	2x4 SP 2x4 SP	No.2 No.2		BRACING- TOP CHORD	Structural wood sheathing dire except end verticals.	ctly applied or 3-3-15 oc purlins,
WEBS	2x4 SP	No.2		BOT CHORD	Rigid ceiling directly applied or	4-4-6 oc bracing. Except:
SLIDER	Left 2x4	\$ SP No.2 1-6-0			10-0-0 oc bracing: 18-20, 12-1	4
REACTIONS.	(lb/size Max Ho) 1=1205/Mechanical, 11=1209/0-	5-8	WEBS	1 Row at midpt 10	-11

Max Uplift 1=-523(LC 12), 11=-539(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2095/1092, 3-4=-2751/1499, 4-5=-1962/1086, 5-6=-1327/828, 6-7=-1144/804, 7-8=-588/499, 8-9=-630/513, 9-10=-476/407, 10-11=-1171/838

- BOT CHORD 1-21=-1381/1942, 4-18=-250/507, 17-18=-1840/2611, 16-17=-1333/1815, 15-16=-759/1001, 14-15=-379/491, 9-14=-1046/694
- WEBS 3-21=-599/494, 18-21=-1331/1869, 3-18=-458/682, 4-17=-920/578, 5-17=-216/511, 5-16=-833/605, 6-16=-120/304, 7-16=-319/551, 7-15=-843/617, 9-15=-450/886, 10-14=-768/1029, 11-14=-269/266

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 16-1-8, Exterior(2) 16-1-8 to 20-4-7, Interior(1) 20-4-7 to 23-6-8, Exterior(2) 23-6-8 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=523, 11=539.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

L	7-6-4	14-9-0	19-10-0	24-11-0 26-9-0	0
I	7-6-4	7-2-12	5-1-0	5-1-0 1-10-0	0
Plate Offsets (X,Y)	[5:0-5-4,0-2-0], [7:0-5-4,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.58 BC 0.65 WB 0.89 Matrix-MS	DEFL. in (loc) I/defl Vert(LL) -0.08 13-14 >999 Vert(CT) -0.23 13-14 >999 Horz(CT) 0.05 9 n/a Wind(LL) 0.12 13-14 >999	L/d PLATES 360 MT20 240 n/a 240 Weight: 181 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S SLIDER Left 2	P No.2 P No.2 P No.2 x4 SP No.2 1-6-0	B T B V	RACING- OP CHORD Structural wood s except end vertic OT CHORD Rigid ceiling dired /EBS 1 Row at midpt	sheathing directly applied or 3-3-5 oc als. ctly applied or 4-11-0 oc bracing. 5-11, 8-9	purlins,
REACTIONS. (Ib/siz Max Max Max	ze) 1=1197/Mechanical, 9=1197/0-5-8 Horz 1=482(LC 11) Uplift 1=-527(LC 12), 9=-624(LC 9) Grav 1=1197(LC 1), 9=1199(LC 17)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-3=-2117/1125, 3-4=-1926/1052, 4-5=-1310/832, 5-6=-908/710, 6-7=-908/710, 7-8=-491/427, 8-9=-1185/744
- BOT CHORD
 1-14=-1416/1938, 13-14=-1213/1625, 11-13=-886/1209, 10-11=-300/391

 WEBS
 3-14=-244/277, 4-14=-116/393, 4-13=-604/467, 5-13=-254/609, 5-11=-465/317, 6-11=-412/415, 7-11=-690/1053, 7-10=-936/795, 8-10=-717/1095

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-9-0, Exterior(2) 14-9-0 to 18-11-15, Interior(1) 18-11-15 to 24-11-0, Exterior(2) 24-11-0 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=527, 9=624.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

—	3-8-10 7-1-12 7-5-12 3-8-10 3-5-2 0-4-0	<u>14-1-8</u> 6-7-12	<u>19-5-8</u> 5-4-0	<u>24-5-8</u> 5-0-0	24 ₇ 9 ₇ 8 26-9-0 0-4-0 1-11-8
Plate Offsets (X,Y)	[1:0-1-12,0-0-10], [5:0-5-4,0-2-0], [8:0-2-0]),0-2-9], [13:0-5-8,0-2-4], [16:	0-6-0,0-2-8]		
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.74 BC 0.81 WB 0.78 Matrix-MS	DEFL. in (loc) I/ Vert(LL) -0.12 15-16 > Vert(CT) -0.32 15-16 > Horz(CT) 0.12 10 Wind(LL) 0.17 17 >	defl L/d 999 360 993 240 n/a n/a 999 240	PLATES GRIP MT20 244/190 Weight: 181 lb FT = 10%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI SLIDER Left 2:	P No.2 P No.2 P No.2 X4 SP No.2 1-6-0		BRACING- TOP CHORD Structural v except end BOT CHORD Rigid ceilin 10-0-0 oct	wood sheathing directly I verticals. g directly applied or 4- pracing: 16-18, 11-13	/ applied or 2-2-1 oc purlins, 2-0 oc bracing. Except:

WEBS

1 Row at midpt

REACTIONS. (lb/size) 1=1205/Mechanical, 10=1209/0-5-8 Max Horz 1=474(LC 11) Max Uplift 1=-523(LC 12), 10=-653(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2087/1083, 3-4=-2779/1527, 4-5=-1650/901, 5-6=-1118/778, 6-7=-1118/778, 7-8=-417/356, 8-9=-460/379, 9-10=-1172/784

- BOT CHORD 1-19=-1382/1921, 4-16=-195/522, 15-16=-1974/2687, 14-15=-1094/1488, 13-14=-368/475, 7-13=-990/826
- WEBS 3-19=-577/469, 16-19=-1278/1842, 3-16=-527/721, 4-15=-1294/938, 5-15=-224/596, 5-14=-466/346, 6-14=-418/416, 7-14=-719/1126, 9-13=-812/1099, 10-13=-263/319

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-1-8, Exterior(2) 14-1-8 to 18-4-7, Interior(1) 18-4-7 to 25-6-8, Exterior(2) 25-6-8 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=523, 10=653.

4-15, 9-10

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

H	<u>6-6-4</u> 6-6-4	12-9-0 6-2-12	19-9 7-0-	-0	<u>26-9-0</u> 7-0-0	
Plate Offsets (X,Y)	[1:0-1-12,0-0-10], [4:0-5-4,0-	2-0]				
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TPl2	CSI. 1.25 TC 1.00 1.25 BC 0.62 YES WB 0.53 014 Matrix-MS	DEFL. in Vert(LL) -0.07 Vert(CT) -0.19 Horz(CT) 0.05 Wind(LL) 0.11	(loc) I/defl L/d 10-11 >999 360 10-11 >999 240 7 n/a n/a 10-11 >999 240	PLATES G MT20 2 Weight: 151 lb	FT = 10%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S SLIDER Left 2	P No.2 P No.2 P No.2 x4 SP No.2 1-6-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathi except end verticals. Rigid ceiling directly app 1 Row at midpt	ng directly applied or 3-6-0 oc p blied or 4-11-6 oc bracing. 4-8, 6-8	urlins,

REACTIONS. (lb/size) 1=1197/Mechanical, 7=1197/Mechanical Max Horz 1=449(LC 11) Max Uplift 1=-528(LC 12), 7=-704(LC 9) Max Grav 1=1197(LC 1), 7=1230(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-3=-2099/1097, 3-4=-1538/892, 4-5=-1055/761, 5-6=-1055/761, 6-7=-1135/777
- BOT CHORD 1-11=-1412/1905, 10-11=-1412/1905, 8-10=-1020/1393
- WEBS 3-10=-599/446, 4-10=-136/481, 4-8=-408/327, 5-8=-565/577, 6-8=-880/1396

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-9-0, Exterior(2) 12-9-0 to 16-11-15, Interior(1) 16-11-15 to 26-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=528, 7=704.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

	. :	3-8-10	7-1-12	7-5-12		14-4-8		1	9-7-0			24-5-8	24 ₀ 78 26-	9-0
		3-8-10	3-5-2	0-4-0		6-10-12	1	ę	5-2-8			4-10-8	0-4-0 1-1	1-8
Plate Offsets (2	X,Y)	[1:0-1-12,0-0-10],	6:0-5-4,0-	2-0], [13:0-5-	8,0-2-4], [1	6:0-6-0,0-2-8]								
LOADING (ps TCLL 20.	if) .0	SPACING- Plate Grip D	2 DOL	2-0-0	CSI. TC	0.80	DEFL. Vert(LL)	in -0.12	(loc) 15-16	l/defl >999	L/d 360		PLATES MT20	GRIP 244/190
TCDL 15.	.0	Lumber DO	L	1.25	BC	0.80	Vert(CT)	-0.33	15-16	>972	240			
BCLL 0.	.0 *	Rep Stress	Incr	YES	WB	0.66	Horz(CT)	0.12	10	n/a	n/a			
BCDL 10.	.0	Code FBC2	2017/TPI20	014	Matrix	«-MS	Wind(LL)	0.17	17	>999	240		Weight: 181 lb	FT = 10%
LUMBER-		·		·			BRACING-							
TOP CHORD	2x4 SP	No.2					TOP CHOR	D	Structur	al wood s	sheathing	directly a	pplied or 3-3-15 o	oc purlins,
BOT CHORD	2x4 SP	No.2							except of	end vertic	als.			
WEBS	2x4 SP	No.2					BOT CHOR	D	Rigid ce	eiling dire	ctly applie	d or 4-3-	15 oc bracing. E>	cept:
SLIDER	Left 2x4	4 SP No.2 1-6-0							10-0-0 (oc bracinę	g: 16-18, 1	11-13		
							WEBS		1 Row a	at midpt		4-15		
REACTIONS.	(lb/size	e) 1=1205/Mecha	anical, 10=	1209/0-5-8										
	Max H	orz 1=443(LC 11)												
	Max U	plift 1=-524(LC 12)), 10=-682	(LC 9)										

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2091/1071, 3-4=-2771/1462, 4-5=-1676/895, 5-6=-1767/1030, 6-7=-1314/810, 7-8=-1314/810, 8-9=-458/345, 9-10=-1171/732 BOT CHORD 1-19=-1327/1909, 4-16=-201/527, 15-16=-1834/2632, 14-15=-1154/1672, 13-14=-375/512,

	8-13=-1093/800
WEBS	3-19=-581/460, 16-19=-1243/1842, 3-16=-469/701, 4-15=-1211/816, 5-15=-547/1078,
	6-15=-576/400, 6-14=-479/321, 7-14=-415/416, 8-14=-740/1221, 10-13=-241/290,
	9-13=-796/1214

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 13-3-0, Exterior(2) 13-3-0 to 14-4-8, Interior(1) 14-4-8 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=524, 10=682.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

		5-6-4	10-9-0)	16-1-9			21-4	7	26-9-0	
	1	5-6-4	5-2-12	2	5-4-9			5-2-1	3	5-4-9	
Plate Offse	ets (X,Y)	[1:0-1-12,0-0-10], [4:0-5-4,	,0-2-0], [10:0-2	-12,0-3-0]							
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 15.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TP	2-0-0 1.25 1.25 YES I2014	CSI. TC 0.61 BC 0.67 WB 0.79 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	ir -0.08 -0.18 0.05 0.11	n (loc) 3 11-12 3 11-12 5 8 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD BRACING- TOP CHORD BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 SLIDER Left 2x4 SP No.2 1-6-0											
REACTIO	NS. (Ib/size Max He Max Uj	e) 1=1197/Mechanical, 8 orz 1=381(LC 11) plift 1=-530(LC 12), 8=-69-	=1197/Mechar 4(LC 9)	nical							
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2116/1132, 3-4=-1703/982, 4-5=-1480/965, 5-6=-1490/974, 6-7=-997/697, 7-8=-1149/746 BOT CHORD 1-12=-1408/1864, 11-12=-1408/1864, 10-11=-1099/1486, 9-10=-696/997 WEBS 3-11=-448/354, 4-11=-112/382, 5-10=-390/350, 6-10=-464/690, 6-9=-877/680, 7-9=-841/1396											
NOTES-											

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-9-0, Exterior(2) 10-9-0 to 14-11-15, Interior(1) 14-11-15 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=530, 8=694.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

L	3-8-10	7-1-12	7-5-12	13-3-0	16-4-8	20-7-0	24-5-8	24 ₀ 918 26-9-0	
	3-8-10	3-5-2	0-4-0	5-9-4	3-1-8	4-2-8	3-10-8	0-4-0 1-11-8	
Plate Offsets ()	X,Y) [1:0-1-12,0-0	-10], [6:0-5-4,0-:	2-0], [13:0-5	-8,0-2-4], [17:0-6-0,0-2-8]					

LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.57 BC 0.70 WB 0.90 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.11 18 >999 360 Vert(CT) -0.28 16-17 >999 240 Horz(CT) 0.13 10 n/a n/a Wind(LL) 0.17 18 >999 240	PLATES GRIP MT20 244/190 Weight: 176 lb FT = 10%
LUMBER-		I	BRACING-	

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 3-3-12 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 4-5-10 oc bracing. Except:
SLIDER	Left 2x4 SP No.2 1-6-0		10-0-0 oc bracing: 17-19, 11-13

REACTIONS. (lb/size) 1=1205/Mechanical, 10=1209/0-5-8 Max Horz 1=404(LC 11) Max Uplift 1=-526(LC 12), 10=-621(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2090/1108, 3-4=-2768/1465, 4-5=-1764/982, 5-6=-1696/988, 6-7=-1444/866,

7-8=-1444/866, 8-9=-502/362, 9-10=-1167/713

- BOT CHORD 1-20=-1261/1875, 4-17=-192/504, 16-17=-1753/2590, 15-16=-1227/1904, 14-15=-1226/1905, 13-14=-399/564, 8-13=-1085/739
- WEBS 3-20=-572/441, 17-20=-1180/1795, 3-17=-450/700, 4-16=-1148/779, 5-16=-525/1046, 6-16=-634/440, 6-14=-636/396, 7-14=-333/338, 8-14=-732/1284, 9-13=-765/1220

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 13-3-0, Exterior(2) 13-3-0 to 16-4-8, Interior(1) 16-4-8 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=526, 10=621.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

	4-7-2		9-0-0	9-0-0 15-0-9		20-11-7				27-0-0	
	4	-7-2	4-4-14	6-0-9			5-1	10-13	1	6-0-9	
Plate Offsets (X,Y) [3:0-5-4,0-2-0], [9:0-3-12,0-3-0]											
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 15.0 0.0 * 10.0	SPACING Plate Grip Lumber D Rep Stres Code FB0	- 2-0-0 DOL 1.25 OL 1.25 s Incr YES C2017/TPI2014	CSI. TC 0.53 BC 0.80 WB 0.87 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.21 0.06 0.13	(loc) 9 9-10 7 9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SP No.2 BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied or 3-6-4 oc purlins, except end verticals. BOT CHORD 2x4 SP No.2 BOT CHORD Structural wood sheathing directly applied or 3-6-4 oc purlins, except end verticals. WEBS 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 4-10-0 oc bracing. REACTIONS. (lb/size) 1=1208/0-5-8, 7=1208/Mechanical Max Horz BOT CHORD Max Horz 1=316(LC 11) Max Uplift 1=-537(LC 12), 7=-690(LC 9) Structural wood sheathing directly applied or 4-10-0 oc bracing.											
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2263/1216, 2-3=-1920/1095, 3-4=-1894/1164, 4-5=-1899/1169, 5-6=-1341/851, 6-7=-1154/739 BOT CHORD 1-11=-1461/1985, 10-11=-1461/1985, 9-10=-1192/1698, 8-9=-859/1341 WEBS 2-10=-348/306, 3-10=-88/345, 3-9=-218/296, 4-9=-437/391, 5-9=-450/691, 5-8=-847/652, 6-8=-953/1637 NOTES- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat.											
II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 9-0-0, Exterior(2) 9-0-0 to											

13-2-15, Interior(1) 13-2-15 to 26-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=537, 7=690.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

6-9-4		13-3-0	18-4-8	1	22-6-12	26-9-0	
		6-5-12	5-1-8	1	4-2-4	4-2-4	
Plate Offsets (X,Y)	[1:0-1-12,0-0-10], [5:0-5-4,0-2	2-0], [11:0-4-0,0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1 Code FBC2017/TPI20	-0-0 CSI. 1.25 TC 0.60 1.25 BC 0.61 YES WB 0.61 14 Matrix-MS	DEFL. in Vert(LL) -0.08 Vert(CT) -0.20 Horz(CT) 0.06 Wind(LL) 0.11	(loc) l/defl 11-12 >999 11-12 >999 8 n/a 11-12 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 151 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.2 P No.2 P No.2		BRACING- TOP CHORD S E BOT CHORD F	Structural wood except end vertio Rigid ceiling dire	sheathing directly a cals. ectly applied or 5-4-	pplied or 3-6-2 of	c purlins,

DEACTIONS			
SLIDER	Left 2v4 SP No 2 1-6-0		· · ·
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly a
DOT CHORD	24 01 110.2		except enu verticais.

Max Horz 1=365(LC 11) Max Uplift 1=-533(LC 12), 8=-563(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2093/1096, 3-4=-1503/884, 4-5=-1470/864, 5-6=-1041/665, 6-7=-1041/665, 7-8=-1157/694 BOT CHORD 1-12=-1194/1831, 11-12=-1194/1831, 10-11=-1014/1690, 9-10=-1012/1693

WEBS 3-11=-663/434, 4-11=-371/760, 5-11=-553/387, 5-9=-910/500, 6-9=-319/342, 7-9=-813/1459

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 13-3-0, Exterior(2) 13-3-0 to 16-3-0, Interior(1) 16-3-0 to 26-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=533, 8=563.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=1540, 10=2234
- 10) Use USP THD26-2 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent at 13-7-8 from the left end to connect truss(es) to front face of bottom chord.
- 11) Use USP JUS24 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 15-8-4 from the left end to 21-8-4 to connect truss(es) to front face of bottom chord
- ontinued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. 6904 Parke East Blvd. Tampa FL 33610 April 17,2019

Joaquin Velez PE No.68182

Date

MiTek USA, Inc. FL Cert 6634

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
						T16796507
413220	04L	Roof Special Girder	1	2		
				_	Job Reference (optional)	
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:10 201	9 Page 2
		ID:LTH	HF4EcV9ta	ayzxn_hS4	OfoznULZ-mLbhuBWTN0KpThDNiZIN1xr1zHr4?PnKqZc	r8szQ8IF

NOTES-

12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-70, 4-5=-70, 5-7=-70, 7-9=-70, 10-18=-20

Concentrated Loads (lb)

Vert: 14=-2203(F) 12=-551(F) 21=-551(F) 22=-551(F) 23=-900(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	3-7-2 7-0-0	12-0-14	17-0-0		21-11-2	27-0-0				
	3-7-2 3-4-14	5-0-14	4-11-2	1	4-11-2	5-0-14				
Plate Offsets (X,Y)	[4:0-6-0,0-2-8], [13:0-4-0,0-4-8]									
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25	CSI. TC 0.92	DEFL. in Vert(LL) -0.18	n (loc) l/a 3 12-13 >9	defl L/d 999 360	PLATES MT20	GRIP 244/190			
TCDL 15.0	Lumber DOL 1.25	BC 0.98	Vert(CT) -0.4	12-13 >7	781 240	MT20HS	187/143			
BCLL 0.0 *	Rep Stress Incr NO	WB 0.83	Horz(CT) 0.09	9 10	n/a n/a					
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MS	Wind(LL) 0.30) 12-13 >9	999 240	Weight: 171 lb	FT = 10%			
LUMBER- TOP CHORD 2x4 SP No.2*Except* 4-7: 2x4 SP M 31 BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied or 2-2-3 oc purlins, except end verticals. BOT CHORD 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied or 4-7-11 oc bracing. WEBS 2x4 SP No.2 BOT CHORD NeBS 1 Row at midpt 9-11 REACTIONS. (Ib/size) 10=2417/Mechanical, 2=2373/0-5-8 Max Horiz 2=230(LC 7) Max Libritif 10=-1238(IC 5) 2=-1273(I C 8)										
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- BOT CHORD 2-15- 11-12 WEBS 3-15= 5-12=	Max Uplift 10=-1238(LC 5), 2=-12/3(LC 8) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-4235/1929, 3-4=-4335/2102, 4-5=-5021/2478, 5-6=-4703/2319, 6-8=-4703/2319, 8-9=-3079/1544, 9-10=-2314/1258 BOT CHORD 2-15=-1912/3789, 14-15=-1912/3789, 13-14=-1995/3931, 12-13=-2531/5032, 11-12=-1608/3079 WEBS 3-15=-269/242, 3-14=-327/287, 4-14=-25/591, 4-13=-633/1356, 5-13=-541/493, 5-12=-464/0/06, 6-12=-654/572, 8-12=-962/1966, 8-11=-1836/(192, 9-11=-1840/3662)									
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp D; Encl., GCt DOL=1.60 plate grip 3) Provide adequate dr 4) All plates are MT20 5) This truss has been	e loads have been considered for this des /ult=145mph (3-second gust) Vasd=112m pi=0.18; MWFRS (directional); cantilever DDL=1.60 rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord live	ign. ph; TCDL=4.2psf; BCDL=€ eft and right exposed ; end load nonconcurrent with a	6.0psf; h=25ft; B=45ft; vertical left and right ny other live loads.	L=24ft; eave exposed; Lur	e=4ft; Cat. mber	No	IN VELE ENSE 68182			

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=1238, 2=1273.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 283 lb down and 412 lb up at 7-0-0, 139 lb down and 204 lb up at 9-0-12, 139 lb down and 204 lb up at 11-0-12, 139 lb down and 204 lb up at 13-0-12, 139 lb down and 204 lb up at 15-0-12, 139 lb down and 204 lb up at 17-0-12, 139 lb down and 204 lb up at 19-0-12, 130 lb down and 204 lb up at 19-0-12, 130 lb down and 204 lb up at 19-0-12, 130 lb down and 204 lb up at 19-0-12, 130 lb down and 204 lb up at 19-0-12, 1 Ib up at 21-0-12, and 139 lb down and 204 lb up at 23-0-12, and 139 lb down and 204 lb up at 25-0-12 on top chord, and 420 lb down and 85 lb up at 7-0-0, 85 lb down at 9-0-12, 85 lb down at 11-0-12, 85 lb down at 13-0-12, 85 lb down at 15-0-12, 85 lb down at 17-0-12, 85 lb down at 19-0-12, 85 lb down at 21-0-12, and 85 lb down at 23-0-12, and 85 lb down at 25-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796508
413220	04M	Half Hip Girder	1	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	: 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:11 2019 Page 2

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:11 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-EX946XX58JSg5rnaFGpcZ8N49hAOkqLT3DLPgIzQ8IE

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-4=-70, 4-9=-70, 10-16=-20

Concentrated Loads (lb)

Vert: 4=-236(B) 7=-137(B) 14=-245(B) 6=-137(B) 12=-54(B) 19=-137(B) 21=-137(B) 22=-137(B) 24=-137(B) 25=-137(B) 26=-137(B) 27=-137(B) 28=-54(B) 29=-54(B) 30=-54(B) 31=-54(B) 32=-54(B) 33=-54(B) 35=-54(B) 35

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796509
413220	05A	Common Girder	1	2	
				2	Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	3.240 s Deo	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:13 2019 Page 2
		ID:LTHF4E	CV9tayzxi	n_hS4Ofoz	nULZ-AwHqXDYLgxiOK8xyNhs4eZTQMUtXChDmWXqVkBzQ8lC

NOTES-

11) Use USP JUS24 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent at 22-1-4 from the left end to connect truss(es) to back face of bottom chord.
 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-4=-70, 4-7=-70, 13-16=-20

Concentrated Loads (lb)

Vert: 9=-1185(B) 8=-1177(B) 19=-1177(B) 20=-1177(B) 21=-1177(B) 22=-1185(B) 23=-1185(B) 24=-1185(B) 25=-1185(B) 26=-1185(B) 27=-2981(B) 28=-581(B) 26=-581(B) 26=-581

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-11-2	11-8-0	17-4-14	23-4-0	
	5-11-2	5-8-14	5-8-14	5-11-2	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl	L/d PLATES GRIP	
TCLL 20.0 TCDL 15.0	Plate Grip DOL 1.25 Lumber DOL 1.25	TC 0.82 BC 0.71	Vert(LL) -0.08 9-11 >999 Vert(CT) -0.18 9-11 >999	360 MT20 244/190 240	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code FBC2017/TPI2014	WB 0.39 Matrix-MS	Horz(CT) 0.06 6 n/a Wind(LL) 0.12 9-11 >999	n/a 240 Weight: 115 lb FT = 10%	

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING-

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-9-0 oc purlins. Rigid ceiling directly applied or 7-4-11 oc bracing.

REACTIONS. (lb/size) 2=1225/0-5-8, 6=1225/0-5-8 Max Horz 2=-200(LC 10) Max Uplift 2=-679(LC 12), 6=-679(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1805/839, 3-4=-1294/704, 4-5=-1294/704, 5-6=-1805/838

BOT CHORD 2-11=-540/1556, 9-11=-540/1556, 8-9=-610/1556, 6-8=-610/1556

WEBS 4-9=-226/628, 5-9=-556/354, 3-9=-557/354

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 11-8-0, Exterior(2) 11-8-0 to 14-8-0, Interior(1) 14-8-0 to 25-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=679, 6=679.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	5-0-0		9-5-15		13-10-1	1	18-	4-0		23-4-0	_
	F	5-0-0	1	4-5-15	I	4-4-3	1	4-5	-15	1	5-0-0	1
Plate Offsets (X,	Y) [3:0-3-0,Edge], [12:0-3-0,0)-0-0], [17:0-4-0	0,0-4-8]								
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TP	2-0-0 1.25 1.25 NO 12014	CSI. TC BC WB Matrix	0.72 0.79 0.08 <-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	ir 0.21 -0.26 0.07	n (loc) 16-17 16-17 7 13	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 WEBS 2x4 SP No.2 REACTIONS. (lb/size) 2=1824/0-5-8, 13=1824/0-5-8 Max Horz 2=200(LC 7) Max Uplift 2=-1167(LC 8), 13=-1167(LC 8)						BRACING- TOP CHORE BOT CHORE JOINTS	0	Structura Except: 1 Row at Rigid cei 1 Brace	al wood s t midpt iling direc at Jt(s): (sheathing dire 3-(ctly applied or 5, 9, 8	ctly applied or 2-10-10 6, 9-12 5-9-1 oc bracing.	oc purlins.
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3402/1866, 3-4=-2273/1354, 4-6=-2273/1354, 6-8=-2273/1354, 8-9=-2273/1354, 9-11=-2274/1358, 11-12=-2274/1358, 12-13=-3401/1865, 3-5=-1207/679, 5-7=-1164/751, 7-10=-1164/751, 10-12=-1207/679 BOT CHORD 2-18=-1518/3147, 17-18=-1526/3125, 16-17=-1661/3249, 15-16=-1536/3052, 13-15=-1530/3073 WEBS 3-18=-7/364, 3-17=-151/320, 12-16=-156/323, 12-15=-8/366, 7-8=-117/358												
NOTES-												

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=1167.13=1167.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 107 lb down and 162 lb up at 5-0-0, 125 lb down and 169 lb up at 5-4-3, 125 lb down and 169 lb up at 7-0-12, 125 lb down and 169 lb up at 9-0-12, 125 lb down and 163 lb up at 11-0-12, 125 lb down and 163 lb up at 12-3-4, 125 lb down and 169 lb up at 14-3-4, 125 lb down and 169 lb up at 16-3-4, and 125 lb down and 169 lb up at 17-11-13, and 107 lb down and 162 lb up at 18-4-0 on top chord, and 345 lb down and 90 Ib up at 5-0-0, 57 lb down and 20 lb up at 7-0-12, 57 lb down and 20 lb up at 9-0-12, 57 lb down and 20 lb up at 11-0-12, 57 lb down and 20 lb up at 12-3-4, 57 lb down and 20 lb up at 14-3-4, and 57 lb down and 20 lb up at 16-3-4, and 345 lb down and 90 lb up at 18-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Ŀ	ob	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
						T16796511
4	13220	05C	Hip Girder	1	1	
						Job Reference (optional)
	TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:15 2019 Page 2

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:15 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-6JPayvacCYy6ZS5LU6uYk_YpDIaNgo_3_rJcp3zQ8IA

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-3=-70, 12-14=-70, 19-22=-20, 3-7=-70, 7-12=-70

Concentrated Loads (lb)

Vert: 3=-85(F) 12=-85(F) 18=-68(F) 15=-68(F) 25=-50(F) 26=-50(F) 27=-48(F) 28=-48(F) 29=-48(F) 30=-48(F) 31=-48(F) 32=-48(F) 33=-85(F) 34=-85(F) 36=-85(F) 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

[Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
						T16796	6512
	413220	06A	ROOF SPECIAL GIRDER	1	2		
					J	Job Reference (optional)	
	TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	: 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:16 2019 Page 2	2
			ID:LTH	HF4EcV9ta	ayzxn_hS4	OfoznULZ-aVzz9EbEzs5yBcgX2qPnGC50li_4P5ICCU3ALVzQ8l	9

NOTES-

- 11) Use USP GTWS3T (With 28-WS3 nails into Girder & 24-WS3 nails into Truss) or equivalent at 5-3-12 from the left end to connect truss(es) to front face of bottom chord. 12) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 6-7-4 from the left end to 13-11-4 to
- connect truss(es) to front face of bottom chord.
- 13) Use USP THDH28-2 (With 36-16d nails into Girder & 10-16d nails into Truss) or equivalent at 15-10-8 from the left end to connect truss(es) to front face of bottom chord. 14) Fill all nail holes where hanger is in contact with lumber.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 425 lb down and 228 lb up at 0-2-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-70, 4-5=-70, 5-9=-70, 8-16=-20 Concentrated Loads (lb)

Vert: 1=-174 14=-9604(F) 12=-1987(F) 19=-193(F) 20=-193(F) 21=-1388(F) 22=-1987(F) 23=-1987(F) 24=-1987(F) 25=-4126(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		5-8-1		10-10-8 5-2-7	11-10-8	17	7-0-15				22-10-8	
Plate Offse	ets (X,Y)	[6:0-0-5,Edge]		02.			,					
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 15.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TPI	2-0-0 1.25 1.25 YES 2014	CSI. TC BC WB Matrix-	0.82 0.50 0.39 -MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.15 0.06 0.09	(loc) 8-9 8-9 6 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHO BOT CHO WEBS	LUMBER- BRACING- TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-11-2 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 6-7-1 oc bracing. WEBS 2x4 SP No.2 Structural wood sheathing directly applied or 6-7-1 oc bracing.											
REACTIO	NS. (Ib/siz Max H Max U	e) 1=1020/0-4-0, 6=1214, lorz 1=-191(LC 10) Jplift 1=-448(LC 12), 6=-683	/0-5-8 3(LC 12)									
FORCES. TOP CHO BOT CHO WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1931/1036, 2-3=-1346/822, 3-4=-1155/808, 4-5=-1345/794, 5-6=-1907/1010 3OT CHORD 1-12=-754/1694, 10-12=-754/1694, 9-10=-397/1155, 8-9=-771/1669, 6-8=-771/1669 VEBS 2-10=-640/449, 3-10=-214/334, 4-9=-169/333, 5-9=-622/421											
NOTES-												

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-10-8, Exterior(2) 10-10-8 to 16-1-7, Interior(1) 16-1-7 to 25-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=448, 6=683.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets ((X Y)	4-8-1 4-8-1 [3:0-5-4 0-2-0] [6:0-0-	8-10-8 4-2-7 1 Edgel		13-10-8 5-0-0			18-0-15 4-2-7	5		22-10-8 4-9-9	
1 1010 0110010 ((7,1)		r,Eugoj	1								
LOADING (ps TCLL 20 TCDL 15 BCLL 0	sf)).0 5.0).0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	CSI. TC BC WB	0.82 0.45 0.19	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.14 0.06	(loc) 9 9-11 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10	0.0	Code FBC201	/TPI2014	Matrix-	MS	VVind(LL)	0.09	8-9	>999	240	Weight: 115 lb	FI = 10%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2					BRACING- TOP CHOR BOT CHOR	D D	Structur Rigid ce	al wood eiling dire	sheathing d ctly applied	irectly applied or 4-0-3 o or 6-3-10 oc bracing.	c purlins.	
REACTIONS.	(Ib/size Max He Max U	e) 1=1020/0-4-0, 6=1 brz 1=-163(LC 10) blift 1=-448(LC 12), 6=	1214/0-5-8 =-683(LC 12)									
FORCES. (It	b) - Max.	Comp./Max. Ten All	forces 250 (lb) or	less except wh	hen shown.							

- TOP CHORD 1-2=-1972/1118, 2-3=-1535/948, 3-4=-1345/947, 4-5=-1532/959, 5-6=-1938/1112
- BOT CHORD 1-12=-842/1739, 11-12=-842/1739, 9-11=-557/1347, 8-9=-874/1704, 6-8=-874/1704
- WEBS 2-11=-458/357, 3-11=-106/346, 4-9=-71/346, 5-9=-475/320

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-10-8, Exterior(2) 8-10-8 to 13-1-7, Interior(1) 13-1-7 to 13-10-8, Exterior(2) 13-10-8 to 18-0-15, Interior(1) 18-0-15 to 25-4-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=448, 6=683.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-8-1	6-10-8	11-4-8	15-10-8	19-0-15	22-10-8				
3-8-1	3-2-7	4-6-0	4-6-0	3-2-7	3-9-9				
Plate Offsets (X,Y)	[1:0-3-0,0-3-0], [3:0-6-0,0-2-8], [5:0-6-0,0	0-2-8], [7:0-1-8,0-0-2], [11	:0-4-0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.89 BC 0.85 WB 0.20 Matrix-MS	DEFL. in Vert(LL) -0.15 Vert(CT) -0.33 Horz(CT) 0.09 Wind(LL) 0.23	(loc) I/defl L/d 11 >999 360 11 >821 240 7 n/a n/a 11 >999 240	PLATES GRIP MT20 244/190 Weight: 135 lb FT = 10%				
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.2 P No.2 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing Rigid ceiling directly appli	g directly applied or 1-11-10 oc purlins. ed or 5-10-0 oc bracing.				
REACTIONS. (Ib/siz Max H Max U	e) 1=1923/0-4-0, 7=2107/0-5-8 lorz 1=-135(LC 6) lplift 1=-893(LC 8), 7=-1125(LC 8)								
FORCES. (lb) Hax. TOP CHORD 1-2= 6-7= BOT CHORD 1-13: 9-10: WEBS 2-12: 5-10:	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 'OP CHORD 1-2=-4116/1934, 2-3=-3915/1871, 3-4=-4228/2041, 4-5=-4228/2041, 5-6=-3919/1847, 6-7=-4098/1803 3OT CHORD 1-13=-1584/3711, 12-13=-1584/3711, 11-12=-1481/3556, 10-11=-1482/3561, 9-10=-1522/3694, 7-9=-1522/3694 VEBS 2-12=-389/332, 3-12=-155/720, 3-11=-390/874, 4-11=-747/620, 5-11=-389/863, 5-10=-125/727, 6-10=-321/166								
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=893, 7=1125. 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 242 lb down and 371 lb up at 6-10-8, 133 lb down and 193 lb up at 15-10-8 on top chord, and 422 lb down and 119 lb up at 6-10-8, 143 lb down and 193 lb up at 15-10-8 on top chord, and 422 lb down and 119 lb up at 6-10-8, 88 lb down at 10-11-4, 88 lb down at 11-9-12, and 88 lb down at 13-9-12, and 422 lb down and 119 lb up at 6-10-8, 88 lb down at 8-11-4, 88 lb down at 11-9-12, and 88 lb down at 13-9-12, and 422 lb down and 119 lb up at 6-10-8, 88 lb down at 8-11-4, 88 lb down at 11-9-12, and 88 lb down at 13-9-12, and 422 lb down and 119 lb up at 6-10-8, 188 lb down at 0-11-4, 88 lb down at 11-9-12, and 88 lb down at 13-9-12, and 422 lb down and 119 lb up at 15-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 									

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-70, 3-5=-70, 5-8=-70, 7-14=-20

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796515
413220	06D	Hip Girder	1	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:19 2019 Page 2
		ID:LT	HF4EcV9	ayzxn_hS	4OfoznULZ-?4e5nGd6GnTX23P6jyzUuqjTVvwNca9fvSHqyqzQ8l6

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-195(B) 5=-195(B) 12=-321(B) 10=-321(B) 19=-129(B) 20=-129(B) 21=-129(B) 24=-129(B) 25=-62(B) 26=-62(B) 27=-62(B) 28=-62(B) 26=-62(B) 26=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					Т	16796516
413220	07A	Common Girder	1	2		
				_	Job Reference (optional)	
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:20 2019 F	Page 2

8.240 s Dec 6 2018 Mi Lek Industries, Inc. Tue Apr 16 12:11:20 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-TGCT?cek14bOgDzIHfUjR2FhLJMDLv1o761NUHzQ8I5

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-5=-70, 5-8=-70, 2-8=-20

Concentrated Loads (lb)

Vert: 9=-1627(B) 15=-534(B) 18=-3100(B) 19=-1627(B) 20=-1627(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

MiTek

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796517
413220	07B	Common Girder	1	ົ	
				_	Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:21 2019 Page 2

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:21 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-xSmsCyeMnOjFHNYVrN?yzFotsjg44JFxMmmx0jzQ8l4

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-4=-70, 4-8=-70, 1-7=-20

Concentrated Loads (lb)

Vert: 13=-1987(B) 15=-1987(B) 18=-1987(B) 19=-1987(B) 20=-4028(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-7-11	I	10-8-5		16-4-0		
Plate Offsets (X,Y)	[2:0-0-5,Edge], [6:0-0-5,Edge]		5-0-10		5-7-11		
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.82 BC 0.35 WB 0.08 Matrix-MS	DEFL. Vert(LL) - Vert(CT) - Horz(CT) Wind(LL)	in (loc) l/de 0.03 8-9 >99 0.08 8-9 >99 0.02 6 n. 0.05 8-9 >99	ofi L/d 19 360 19 240 1/a n/a 19 240	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wo Rigid ceiling	od sheathing dire directly applied or	ctly applied or 5-2-9 9-0-11 oc bracing.	oc purlins.
REACTIONS. (Ib/size Max H Max U	e) 2=910/0-5-8, 6=910/0-5-8 orz 2=151(LC 11) plift 2=-538(LC 12), 6=-538(LC 12)						
FORCES. (lb) - Max	Comp /Max Ten - All forces 250 (lb) or l	ess except when shown					

- TOP CHORD 2-3=-1244/606, 3-4=-1096/577, 4-5=-1096/576, 5-6=-1244/605
- BOT CHORD 2-9=-348/1080, 8-9=-166/742, 6-8=-418/1080
- WEBS 4-8=-190/415, 5-8=-271/262, 4-9=-190/415, 3-9=-271/262

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 8-2-0, Exterior(2) 8-2-0 to 11-2-0, Interior(1) 11-2-0 to 18-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and
- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=538, 6=538.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	3-0-0	8-2-0	13-4-0		16-4-0	
Plate Offsets (X V)	<u>3-0-0</u> [2:0-0-1 Edge] [3:0-3-0 Edge] [6:0-3-0 E	5-2-0 Edge] [7:0-0-1 Edge]	5-2-0	I	3-0-0	
	[2.0-0-1,Edge], [3.0-3-0,Edge], [0.0-3-0,E					
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.62 BC 0.57 WB 0.20 Matrix-MS	DEFL. in (loc) I/d Vert(LL) -0.09 10-11 >9 Vert(CT) -0.13 10-11 >9 Horz(CT) 0.05 7 1	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.2	I I	BRACING- TOP CHORD Structural w BOT CHORD Rigid ceiling JOINTS 1 Brace at J	vood sheathing dire g directly applied or lt(s): 4	ctly applied or 4-0-10 8-10-6 oc bracing.) oc purlins.
REACTIONS. (Ib/size Max H Max U Max G	e) 2=762/0-5-8, 7=762/0-5-8 orz 2=151(LC 7) plift 2=-623(LC 8), 7=-623(LC 8) rav 2=1138(LC 36), 7=1138(LC 37)					
FORCES. (lb) - Max. TOP CHORD 2-3=- 5-6=-	Comp./Max. Ten All forces 250 (lb) or 2059/610, 3-4=-719/245, 4-6=-719/245, 960/369	less except when shown. 6-7=-2059/610, 3-5=-960/369	9,			
BOT CHORD 2-11= WEBS 3-11=	=-399/1948, 10-11=-413/1910, 9-10=-413 =-73/330, 3-10=-432/146, 4-10=-20/530,	3/1846, 7-9=-399/1872 6-10=-435/145, 6-9=-73/330,	4-5=-40/544			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp D; Encl., GCp DOL=1.60 plate grip 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b	e loads have been considered for this des ult=145mph (3-second gust) Vasd=112n bi=0.18; MWFRS (directional); cantilever DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on th ottom chord and any other members.	sign. nph; TCDL=4.2psf; BCDL=6. left and right exposed ; end v e load nonconcurrent with any ne bottom chord in all areas v	0psf; h=25ft; B=45ft; L=24ft; eave vertical left and right exposed; Lun y other live loads. vhere a rectangle 3-6-0 tall by 2-0	=4ft; Cat. nber 0-0 wide	No No	JIN VELENSE

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=623.7=623.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 272 lb down and 177 lb up at 3-0-0, 44 lb down and 52 lb up at 3-4-3, 44 lb down and 52 lb up at 5-0-12, 44 lb down and 52 lb up at 7-0-12, 44 lb down and 44 lb up at 8-2-0, 44 lb down and 52 lb up at 9-3-4, 44 lb down and 52 lb up at 11-3-4, and 44 lb down and 52 lb up at 12-11-13, and 272 lb down and 177 lb up at 13-4-0 on top chord, and 206 lb down and 102 lb up at 3-0-0, 52 lb down and 8 lb up at 5-0-12, 52 lb down and 8 lb up at 7-0-12, 52 lb down and 8 lb up at 8-2-0, 52 lb down and 8 lb up at 9-3-4, and 52 lb down and 8 lb up at 11-3-4 , and 206 lb down and 102 lb up at 13-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. Velez PE No.681/ `Inc. FL Cert `st Blvd. 3

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796519
413220	07D	Hip Girder	2	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL			.240 s Dec	6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:23 2019 Page 2
		ID:L	_THF4EcV	9tayzxn_h	S4OfoznULZ-trucdegdJ?zzXhityo1Q2gtCkWNgYO6Ep4F15bzQ8l2

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-70, 6-8=-70, 12-15=-20, 3-5=-70, 5-6=-70

Concentrated Loads (lb)

Vert: 11=54(F) 10=8(F) 9=54(F) 18=74(F) 19=74(F) 20=8(F) 21=8(F) 22=8(F) 23=8(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

MiTek

J	ob	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
						T1679652	20
4	13220	08A	Half Hip Girder	1	2		
					2	Job Reference (optional)	
	TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	3.240 s Deo	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:24 2019 Page 2	

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:24 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-L1S_r_hF4J5q8qH4WVYfbuQPNwIVHjxO2k?bd2zQ8I1

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-6=-70, 6-7=-70, 2-8=-20

Concentrated Loads (lb)

Vert: 17=-2789(F) 18=-1627(F) 19=-1627(F) 20=-1627(F) 21=-1041(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>1-0-0</u> -0-0	8-1-6 7-1-6		15-0-0 6-10-10	2-0-0
Plate Offsets (X,Y)	[2:0-0-4,Edge], [2:0-1-13,Edge], [4:0-2-4	3,0-3-0], [5:0-5-4,0-2-0], [6:Edge	,0-1-8]		
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.95 BC 0.62 WB 0.64 Matrix-MS	DEFL. in Vert(LL) -0.05 Vert(CT) -0.13 Horz(CT) 0.02 Wind(LL) -0.09	l (loc) I/defl L/d 8-9 >999 360 8-9 >999 240 7 n/a n/a 9-14 >999 240	PLATES GRIP MT20 244/190 Weight: 111 lb FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Left: 2x6 SP No.2	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 2-2-0 oc purlins, 6-7-3 oc bracing.

REACTIONS. (lb/size) 7=686/0-5-8, 2=1006/0-5-8 Max Horz 2=545(LC 11) Max Uplift 7=-342(LC 9), 2=-583(LC 12) Max Grav 7=690(LC 17), 2=1006(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1013/325, 3-4=-879/290, 4-5=-398/279

BOT CHORD 2-9=-776/1005, 8-9=-607/750, 7-8=-284/350

WEBS 4-9=-36/330, 4-8=-570/448, 5-8=-272/610, 5-7=-727/554

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 15-0-0, Exterior(2) 15-0-0 to 16-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=342, 2=583.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 6=686/0-5-8, 2=1006/0-5-8 Max Horz 2=477(LC 11) Max Uplift 6=-375(LC 9), 2=-588(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-977/319, 3-4=-530/312

BOT CHORD 2-8=-771/974, 7-8=-771/974, 6-7=-420/511

WEBS 3-7=-555/394, 4-7=-96/422, 4-6=-684/549

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 13-0-0, Exterior(2) 13-0-0 to 16-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=375, 2=588.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1-0-0	5-9-9	11-0-0		1	17-0-0	
	1-0-0	4-9-9	5-2-7			6-0-0	
Plate Offsets (X,Y)	[2:0-0-12,1-1-1], [2:0-2-5,Edge	e], [4:0-5-4,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code FBC2017/TPI20	0-0 CSI. .25 TC 0.82 .25 BC 0.86 (ES WB 0.66 14 Matrix-MS	DEFL. 2 Vert(LL) - 0.0 5 Vert(CT) - 0.1 3 Horz(CT) 0.0 Wind(LL) 0.0	in (loc))5 7-8 11 7-8)2 6 08 7-8	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 WEDGE Left: 2x6 SP N.J	SP No.2 SP No.2 SP No.2		BRACING- TOP CHORD BOT CHORD	Structur except Rigid ce	ral wood sheathing end verticals. eiling directly appli	g directly applied or 3-8-5 ed or 6-4-0 oc bracing.	oc purlins,
REACTIONS. (Ib/s Max Max	ize) 6=686/0-5-8, 2=1006/0-5- Horz 2=410(LC 11) Uplift 6=-402(LC 9), 2=-592(LC	8 12)					
FORCES. (Ib) - Ma	x. Comp./Max. Ten All forces 2	250 (lb) or less except when	shown.				

TOP CHORD 2-3=-957/357, 3-4=-650/364

BOT CHORD 2-8=-772/943, 7-8=-772/943, 6-7=-522/648

WEBS 3-7=-384/281, 4-7=-54/376, 4-6=-681/540

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 11-0-0, Exterior(2) 11-0-0 to 15-2-15, Interior(1) 15-2-15 to 16-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=402, 2=592.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1-0-0	4-9-9		9-0-0	1		17-0)-0	
	1-0-0	3-9-9		4-2-7			8-0	-0	I
Plate Offsets (X,Y)	[2:0-2-5,Edge], [2:0-0-12,	1-1-1]							
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TF	2-0-0 1.25 1.25 YES Pl2014	CSI. TC 0.82 BC 0.83 WB 0.40 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (ld -0.10 7 -0.20 7 0.02 0.07 8	oc) l/defl 7-8 >999 7-8 >999 7 n/a 8-9 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 96 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x6 SP No.2	P No.2 P No.2 P No.2			BRACING- TOP CHOR BOT CHOR	D Stru exc D Rigi	uctural wood ept end vertii id ceiling dire	sheathing dir cals. ctly applied o	rectly applied or 3-8-5 or 6-4-3 oc bracing.	oc purlins,
REACTIONS. (Ib/siz Max H Max L	e) 7=686/0-5-8, 2=1006 Horz 2=343(LC 11) Jplift 7=-424(LC 9), 2=-596	/0-5-8 6(LC 12)							
FORCES. (lb) - Max. TOP CHORD 2-3=	. Comp./Max. Ten All for -917/425, 3-4=-774/387, 4	ces 250 (lb) or le -5=-700/409	ess except when show	wn.					

2-9=-749/878, 8-9=-749/878, 7-8=-467/551 BOT CHORD

WEBS 5-8=-164/300, 5-7=-689/556

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 9-0-0, Exterior(2) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 16-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=424, 2=596.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1-0-01-2-12 3-9-9	7-0-0	12-0-	-0	17-0-0	
	' 1-0-00- 2-1 2 2-6-13	3-2-7	5-0-1	0	5-0-0	
Plate Offsets (X,Y)	[2:0-0-12,1-0-9], [2:0-4-11,0-1-9], [4:0-	5-4,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. TC 0.80 BC 0.59 WB 0.55 Matrix-MS	DEFL. in Vert(LL) -0.04 Vert(CT) -0.09 Horz(CT) 0.01 Wind(LL) 0.07	(loc) I/defl L/d 9-10 >999 360 8-9 >999 240 7 n/a n/a 9-10 >999 240	PLATES MT20 Weight: 95 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SF 4-6: 2x BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x6 SP No.2	P M 31 *Except* 4 SP No.2 P M 31 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dii except end verticals. Rigid ceiling directly applied of	rectly applied or 3-10-3 or 8-1-10 oc bracing.	oc purlins,
REACTIONS. (Ib/size Max H Max U Max G	e) 7=1487/0-5-8, 2=1635/0-5-8 orz 2=275(LC 7) plift 7=-778(LC 5), 2=-975(LC 8) rav 7=1487(LC 1), 2=1646(LC 36)					
FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-10= WEBS 3-10=	Comp./Max. Ten All forces 250 (lb) 1114/765, 3-4=-1580/856, 4-5=-1494/ -752/1008, 9-10=-752/1008, 8-9=-912 -393/296, 3-9=-495/704, 4-9=-83/390	r less except when shown. 305, 5-6=-1494/805, 6-7=-13 /1469 5-8=-766/672, 6-8=-958/17	332/834 '38			
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp D; Encl., GC; DOL=1.60 plate grip 3) Provide adequate di 4) This truss has been 5) * This truss has been will fit between the b 6) Provide mechanical 7=778, 2=975. 7) Hanger(s) or other of -2-6-0, 252 lb down down and 193 lb up and 272 lb down an 15-0-12, and 99 lb of others. 	e loads have been considered for this of /ult=145mph (3-second gust) Vasd=11 bi=0.18; MWFRS (directional); cantilev i DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord I n designed for a live load of 20.0psf or iottom chord and any other members. connection (by others) of truss to bear connection device(s) shall be provided and 377 lb up at 7-0-0, 133 lb down at at 13-0-12, and 133 lb down at 193 d 113 lb up at 7-0-0, 88 lb down at 9- lown at 16-4-12 on bottom chord. The	esign. 2mph; TCDL=4.2psf; BCDL er left and right exposed ; er ve load nonconcurrent with the bottom chord in all area ng plate capable of withstar sufficient to support concern nd 193 lb up at 9-0-12, 133 b up at 15-0-12, and 148 ll l-12, 88 lb down at 11-0-12 design/selection of such co	=6.0psf; h=25ft; B=45ft; L nd vertical left and right e any other live loads. as where a rectangle 3-6- nding 100 lb uplift at joint trated load(s) 240 lb dow lb down and 185 lb up at b down and 185 lb up at 5, 88 lb down at 13-0-12, ponnection device(s) is the	L=24ft; eave=4ft; Cat. xposed; Lumber -0 tall by 2-0-0 wide t(s) except (jt=lb) m and 122 lb up at tt 11-0-12, 133 lb 16-4-12 on top chord, and 88 lb down at b responsibility of	P P P STA	68182 OF

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETERENCE PAGE MIT-14's rev. 10/04/2013 BETORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

S/ONAL EN Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

[Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
						T16796525
	413220	08F	Half Hip Girder	1	1	
						Job Reference (optional)
	TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:28 2019 Page 2
			ID:	LTHF4Ec\	'9tayzxn_h	S4OfoznULZ-EphVgLkl8YbFdSbrlLdblka0kX3YDawzzMzolpzQ8kz

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-4=-70, 4-6=-70, 7-11=-20

Concentrated Loads (lb)

Vert: 1=-186(B) 4=-205(B) 9=-62(B) 16=-129(B) 18=-129(B) 19=-129(B) 20=-129(B) 21=-148(B) 22=-62(B) 23=-62(B) 24=-62(B) 25=-62(B) 25=-62

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u>5-7-3</u> 5-7-3		10-10-13 5-3-11			<u>16-6-0</u> 5-7-3		
LOADING (psf) TCLL 20.0 TCDL 15.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.82 BC 0.50	DEFL. Vert(LL) - Vert(CT) -	in (loc) -0.05 10-11 -0.12 10-11	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code FBC2017/TPI2014	WB 0.06 Matrix-MS	Horz(CT) Wind(LL)	0.03 8 0.08 10-11	n/a >999	n/a 240	Weight: 86 lb	FT = 10%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
SLIDER	Left 2x4 SP No.2 1-6-0, Right 2x4 SP No.2 1-6-0

REACTIONS. (lb/size) 2=918/0-3-0, 8=917/0-3-0 Max Horz 2=-152(LC 10) Max Uplift 2=-541(LC 12), 8=-541(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1046/538, 4-5=-929/529, 5-6=-929/528, 6-8=-1046/538
- BOT CHORD 2-11=-279/894, 10-11=-157/676, 8-10=-347/886

WEBS 5-10=-141/305, 5-11=-141/305

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-4-10, Interior(1) 0-4-10 to 8-3-0, Exterior(2) 8-3-0 to 11-3-0, Interior(1) 11-3-0 to 19-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=541, 8=541.

De STATA DE JOAQUIN VE 68182 Joaquin Velez PE No.68182

Structural wood sheathing directly applied or 4-9-3 oc purlins.

Rigid ceiling directly applied or 9-9-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	3-0-1	8-3-0	13-5-15	16-6-0
	3-0-1	5-2-15	5-2-15	3-0-1
Plate Offsets (X,Y)	[3:0-3-0,0-0-0], [6:0-3-0,0-0-0]			
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNO	CSI. TC 0.62 BC 0.65 WB 0.09	DEFL. in (loc) l/defl L/d Vert(LL) -0.06 11-12 >999 240 Vert(CT) -0.11 11-12 >999 180 Horz(CT) 0.03 7 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MS		Weight: 105 lb FT = 10%
LUMBER- TOP CHORD 2x4 SP No.2			BRACING- TOP CHORD Structural wood sheathing	directly applied or 4-6-12 oc purlins.

TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 4-6-12 oc purlins.
BOT CHORD	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS	2x4 SP No.2	JOINTS	1 Brace at Jt(s): 4
SLIDER	Left 2x4 SP No.2 1-6-0, Right 2x4 SP No.2 1-6-0		

REACTIONS. (lb/size) 2=777/0-3-0, 7=777/0-3-0 Max Horz 2=-152(LC 6) Max Uplift 2=-635(LC 8), 7=-635(LC 8) Max Grav 2=1067(LC 36), 7=1067(LC 37)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1433/516, 3-4=-515/225, 4-6=-515/225, 6-7=-1433/516, 3-5=-813/363, 5-6=-813/363

BOT CHORD 2-12=-312/1341, 11-12=-330/1345, 10-11=-330/1276, 7-10=-312/1272 WEBS 4-11=-3/359, 4-5=-23/376

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=635 7=635
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 280 lb down and 204 lb up at 3-0-0, 44 lb down and 58 lb up at 3-4-4, 44 lb down and 58 lb up at 5-0-12, 44 lb down and 58 lb up at 7-0-12, 44 lb down and 50 lb up at 8-3-0, 44 lb down and 58 lb up at 9-5-4, 44 lb down and 58 lb up at 11-5-4, and 44 lb down and 58 lb up at 13-1-12, and 280 Ib down and 204 lb up at 13-6-0 on top chord, and 133 lb down and 75 lb up at 3-0-0, 34 lb down and 6 lb up at 5-0-12, 34 lb down and 6 lb up at 7-0-12, 34 lb down and 6 lb up at 8-3-0, 34 lb down and 6 lb up at 9-5-4, and 34 lb down and 6 lb up at 11-5-4, and 133 lb down and 75 lb up at 13-5-2 on bottom chord. The design/selection of such connection device(s) is the responsibility of others
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					T167	/96527
413220	09B	Hip Girder	1	1		
					Job Reference (optional)	
TIBBETTS LUMBER CO LLC, LUTZ, FL			8	3.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:30 2019 Page	e 2
ID:LTHF4EcV9tayzxn_hS4OfoznULZ-ABpF51l0g9rztlkDtmf3q9gPzLkzhbVGQgSvqizC			Зkx			

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-3=-70, 6-8=-70, 14-18=-20, 3-5=-70, 5-6=-70

Concentrated Loads (lb)

Vert: 12=41(F) 11=6(F) 10=41(F) 22=85(F) 23=85(F) 24=6(F) 25=6(F) 26=6(F) 27=6(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-9-0, Exterior(2) 10-9-0 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=256, 6=311.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=266. 5=343.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	3-7-2	7-(0-0	10-4-8	13-9-0	
	3-7-2	3-4	-14	3-4-8	3-4-8	
Plate Offsets (X,Y)	[4:0-5-4,0-2-0]					
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO	CSI. TC 0.62 BC 0.88 WB 0.31	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	in (loc) l/defl L/d 4 9-10 >999 360 9 9-10 >999 240 2 7 p/a p/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MS	Wind(LL) 0.0	6 9-10 >999 240	Weight: 81 lb	FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 4-1-0 or r 6-7-5 oc bracing.	o purlins,
REACTIONS. (Ib/size Max Ho Max U	 7=1332/Mechanical, 2=1142/0-5-8 porz 2=285(LC 7) plift 7=-701(LC 5), 2=-685(LC 8) 					
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-10= WEBS 3-9=-	Comp./Max. Ten All forces 250 (lb) or l 1623/680, 3-4=-1467/734, 4-5=-974/547, -760/1468, 9-10=-760/1468, 8-9=-738/1 292/185, 4-9=-59/573, 4-8=-566/247, 5-8	ess except when shown. 5-6=-974/547, 6-7=-124 376 =-517/467, 6-8=-733/137	0/730 77			
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp D; Encl., GCp DOL=1.60 plate grip 3) Provide adequate dr: 4) This truss has been 5) * This truss has been 6) Refer to girder(s) for 7) Provide mechanical of 7=701, 2=685. 8) Hanger(s) or other ca 7-0-0, 139 lb down and 42 	loads have been considered for this des ult=145mph (3-second gust) Vasd=112m i=0.18; MWFRS (directional); cantilever DOL=1.60 designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on th ottom chord and any other members. truss to truss connections. connection (by others) of truss to bearing onnection device(s) shall be provided suf nd 204 lb up at 9-0-12, and 139 lb down 0 lb down and 85 lb up at 7-0-0. 85 lb do	ign. ph; TCDL=4.2psf; BCDL left and right exposed ; er load nonconcurrent with le bottom chord in all area plate capable of withstar ficient to support concent and 204 lb up at 11-0-1; own at 9-0-12, and 85 lb	=6.0psf; h=25ft; B=45ft nd vertical left and right any other live loads. as where a rectangle 3- nding 100 lb uplift at joi trated load(s) 283 lb do 2, and 153 lb down anc down at 11-0-12. and	; L=24ft; eave=4ft; Cat. exposed; Lumber 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) wn and 412 lb up at l 197 lb up at 13-0-12 94 lb down at 13-0-12	* No	IN VELE ENSE 68182

- on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-4=-70, 4-6=-70, 7-11=-20

Concentrated Loads (lb)

Vert: 9=-245(F) 4=-236(F) 14=-137(F) 16=-137(F) 17=-153(F) 18=-54(F) 19=-54(F) 20=-59(F)

PE No.68187 Cert of 3 SIONALEN

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=930.8=1191.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1312 lb down and 721 lb up at 7-0-12, and 592 lb down and 363 lb up at 9-0-12, and 581 lb down and 331 lb up at 11-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-70, 5-6=-30, 7-11=-20 Concentrated Loads (lb) Vert: 14=-1312(B) 15=-592(B) 16=-581(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

		L	1-11-0	∠ _ī 3-φ	0-0-12			11-2-	8	-ю-р	13-0-0	
		I	1-11-8	0-4-0	4-2-4	1		4-8-1	2	0-4-0	1-5-8	
Plate Offse	ets (X,Y)	[2:0-0-0,0-1-4], [3:0-4-12,	Edge], [3:0-	1-3,0-1-4], [11:	0-2-8,0-2-4]							
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.59	Vert(LL)	-0.14	13	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.49	Vert(CT)	-0.36	13	>430	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.24	8	n/a	n/a		
BCDL	10.0	Code FBC2017/T	PI2014	Matri	x-MS	Wind(LL)	0.31	13	>503	240	Weight: 87 lb	FT = 10%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP M 31 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
	5-7: 2x4 SP No.2		except end verticals.
BOT CHORD	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-11-13 oc bracing. Except:
	3-11: 2x4 SP M 31		10-0-0 oc bracing: 9-11
WEBS	2x4 SP No.2		-
WEDGE			

Left: 2x4 SP No.3

REACTIONS.	(lb/size)	8=571/Mechanical, 2=780/0-5-8
	Max Horz	2=420(LC 11)
	Max Uplift	8=-273(LC 9), 2=-471(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 3-16=-499/71, 3-4=-1083/526, 4-5=-298/189, 7-8=-610/529

- BOT CHORD 3-12=-1000/1231, 11-12=-1001/1232
- WEBS 4-12=-56/331, 4-11=-980/755, 5-11=-133/267, 8-11=-264/288, 7-11=-547/643

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 11-0-0, Exterior(2) 11-0-0 to 12-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=273, 2=471.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		L	1-11-8	2-3-8	5-	0-0	<u>ا</u>	9-0-0			11-2-8	11-6-8	13-0-0	4
		Ι	1-11-8	0-4-0	2-	8-8	4	I-0-0		1	2-2-8	0-4-0	1-5-8	I
Plate Offsets (2	X,Y)	[2:0-0-0,0-1-0], [3:0-5	5-12,0-0-9], [3	3:0-2-8,0-2	-0], [5:0-	5-4,0-2-0], [1	1:0-2-12,0-2-8]							
LOADING (ps TCLL 20. TCDL 15. BCLL 0. BCDL 10.	f) 0 0 0 * 0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ind Code FBC207	2-0-0 L 1.25 1.25 cr YES I7/TPI2014		CSI. TC BC WB Matrix	0.57 0.46 0.31 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.29 0.19 0.25	(loc) 14 14 8 14	l/defl >999 >535 n/a >611	L/d 360 240 n/a 240	PL MT We	ATES '20 eight: 84 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 5-7: 2x4 2x4 SP 3-11: 2x 2x4 SP	M 31 *Except* 4 SP No.2 No.2 *Except* 44 SP M 31 No.2					BRACING- TOP CHOR BOT CHOR	D D	Structur except Rigid ce 6-4-13 (6-11-6 (10-0-0 (ral wood end vertio eiling dire oc bracin oc bracin oc bracin	sheathing dire cals. ectly applied o g: 3-13 g: 12-13. g: 9-11	ectly applie r 10-0-0 o	ed or 6-0-0 o	oc purlins, Except:
REACTIONS.	(Ib/size Max Ho Max Up) 8=571/Mechanic orz 2=352(LC 11) olift 8=-305(LC 9), 2=	al, 2=780/0-5 476(LC 12)	i-8							J			

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-17=-469/73, 3-4=-1353/882, 4-5=-563/303, 5-6=-262/210, 6-7=-252/204,

7-8=-581/514

BOT CHORD 3-13=-1259/1502, 12-13=-1261/1504, 11-12=-536/620

5-12=-198/368, 5-11=-468/403, 7-11=-541/627, 4-13=-91/289, 4-12=-958/781 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 9-0-0, Exterior(2) 9-0-0 to 12-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=305, 2=476.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1-11-8 2-3-8	7-0-0		11-2-8	11-6-8 13-0-0
	1-11-8 d-4-d	4-8-8	I	4-2-8	0-4-0 1-5-8
Plate Offsets (X,Y)	[2:0-0-0,0-1-4], [3:0-7-8,0-0-6], [3:0-0-6	,0-1-12], [4:0-5-4,0-2-0], [10):0-2-12,0-2-4]		
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.57 BC 0.53 WB 0.31 Matrix-MS	DEFL. in Vert(LL) -0.17 Vert(CT) -0.41 Horz(CT) 0.24 Wind(LL) 0.37	(loc) I/defl L/d 3-11 >922 360 3-11 >373 240 7 n/a n/a 12 >414 240	PLATES GRIP MT20 244/190 Weight: 71 lb FT = 10%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP M 31 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
	4-6: 2x4 SP No.2		except end verticals.
BOT CHORD	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 7-2-9 oc bracing. Except:
	3-10: 2x4 SP M 31		10-0-0 oc bracing: 8-10
WEBS	2x4 SP No.2		-

REACTIONS. (lb/size) 7=571/Mechanical, 2=780/0-5-8 Max Horz 2=285(LC 11) Max Uplift 7=-330(LC 9), 2=-479(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 3-15=-439/80, 3-4=-952/615, 4-5=-302/262, 5-6=-285/237, 6-7=-527/441
- BOT CHORD 3-11=-829/973, 10-11=-836/991, 5-10=-282/309
- WEBS 4-11=-95/341, 4-10=-699/585, 6-10=-523/617

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 7-0-0, Exterior(2) 7-0-0 to 11-2-15, Interior(1) 11-2-15 to 12-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=330, 2=479.

AQUIN JOAQUIN ICEN No 681 JOAQUIN VE 68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

besign valid for use only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

[Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
						T16796	6535
	413220	11E	Roof Special Girder	1	1		
						Job Reference (optional)	
	TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:36 2019 Page 2	2
			ID:LTHF4E	cV9tayzxn	_hS4Ofoz	nULZ-?LAWM4qnF?c7bgCND0mT4QwPtmoM5CP9pcvD1LzQ8kr	r

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-70, 3-4=-70, 4-5=-70, 5-7=-70, 15-16=-20, 14-15=-20, 3-11=-20, 9-10=-20, 8-9=-20 Concentrated Loads (lb)

Vert: 4=-48(F) 13=-79(F) 20=-70(F) 23=-21(F) 24=-67(F) 25=-153(F) 26=-111(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		6-3-13 6-3-13	<u> </u>	
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.53 BC 0.42 WB 0.58 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.03 6-7 >999 360 Vert(CT) -0.08 7-10 >999 240 Horz(CT) 0.01 6 n/a n/a Wind(LL) 0.06 7-10 >999 240	PLATES GRIP MT20 244/190 Weight: 61 lb FT = 10%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-10-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-2-0 oc bracing.

REACTIONS. (lb/size) 1=554/Mechanical, 6=568/Mechanical Max Horz 1=427(LC 11) Max Uplift 1=-228(LC 12), 6=-277(LC 12) Max Grav 1=554(LC 1), 6=580(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-830/447, 2-3=-253/199, 3-6=-235/330
- BOT CHORD 1-7=-622/832, 6-7=-622/832
- WEBS 2-7=0/281, 2-6=-753/535

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=228, 6=277.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		6-6-13 6-6-13			12-10-0 6-3-3	
LOADING (psf) SPACING TCLL 20.0 Plate Grip TCDL 15.0 Lumber D BCLL 0.0 * Rep Stress BCDL 10.0 Code FBd	- 2-0-0 DOL 1.25 DL 1.25 s Incr YES 22017/TPI2014	CSI. TC 0.55 BC 0.49 WB 0.60 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.05 7-10 -0.13 7-10 0.01 6 0.09 7-10	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 62 lb FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. (lb/size) 1=565/0-5-8, 6=579/Mechanical Max Horz 1=429(LC 11) Max Uplift 1=-233(LC 12), 6=-281(LC 12) Max Grav 1=565(LC 1), 6=591(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-854/461, 2-3=-252/198, 3-6=-232/327

BOT CHORD 1-7=-626/854, 6-7=-626/854

WEBS 2-7=0/295, 2-6=-780/541

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-10-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=233, 6=281.

D STATE OF

Structural wood sheathing directly applied or 5-8-5 oc purlins,

Rigid ceiling directly applied or 7-1-11 oc bracing.

except end verticals.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		—	<u>6-6-13</u> 6-6-13		-		12-10-0 6-3-3		
Plate Offsets (X,Y)	[2:0-0-9,Edge]							1	
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TP	2-0-0 1.25 1.25 YES I2014	CSI. TC 0.82 BC 0.43 WB 0.60 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.04 8-11 -0.09 8-11 0.01 7 -0.04 8-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 10%

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No 2

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 5-10-2 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 7-4-11 oc bracing.

REACTIONS. (lb/size) 2=758/0-5-8, 7=562/Mechanical Max Horz 2=465(LC 11) Max Uplift 2=-467(LC 12), 7=-256(LC 12)

Max Grav 2=758(LC 1), 7=576(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-851/315, 3-4=-252/198, 4-7=-236/331

BOT CHORD 2-8=-586/811, 7-8=-586/811

WEBS 3-8=0/283, 3-7=-775/494

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 12-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=467, 7=256.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	 	2-4-8 2-	-6-0	5-1-8		+	7-9-12			I	10-9-8	
Plate Off	sets (X,Y)	[1:0-1-1,0-0-6], [3:0-5-12	2,0-2-0]	2-7-8			2-8-4				2-11-12	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.29	Vert(LL)	-0.01	7	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.19	Vert(CT)	-0.02	7-8	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.15	Horz(CT)	0.01	14	n/a	n/a		
BCDL	10.0	Code FBC2017/	TPI2014	Matri	x-MS	Wind(LL)	0.01	7	>999	240	Weight: 56 lb	FT = 10%
LUMBER	१-	-				BRACING-						

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
OTHERS	2x6 SP No 2

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 9=769/0-3-0, 14=553/0-5-0 Max Horz 9=126(LC 9) Max Uplift 9=-385(LC 12), 14=-208(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-435/222, 2-3=-504/166, 3-4=-537/190, 6-10=-141/412, 5-10=-141/412
- BOT CHORD 1-9=-174/437, 8-9=-189/339, 7-8=-207/421, 6-7=-229/531
- WEBS 2-9=-672/542, 2-8=-338/650, 4-6=-553/215, 5-14=-591/223

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=385, 14=208.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-70, 3-5=-150, 6-11=-20

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 9=2110/0-3-0, 14=1092/0-5-0 Max Horz 9=121(LC 5) Max Uplift 9=-1625(LC 4), 14=-929(LC 5) Max Grav 9=2812(LC 31), 14=1559(LC 30)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-3434/1940, 3-4=-1879/1104, 4-5=-304/189, 6-10=-872/1461, 5-10=-872/1461
- BOT CHORD 7-8=-1832/3117, 6-7=-1141/1897
- 2-9=-2648/1538, 2-8=-1933/3417, 3-8=-1365/744, 3-7=-1529/866, 4-7=-607/1018, WEBS 4-6=-2093/1239, 5-14=-1657/988

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=1625, 14=929.
- 9) Load case(s) 1, 2, 13, 14, 15, 16, 17, 18, 28, 29, 30, 31 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2969 lb down and 1512 lb up at 5-1-8, 148 lb down and 152 lb up at 5-1-8, and 40 lb down and 63 lb up at 7-2-4, and 40 lb down and 63 lb up at 9-2-4 on top chord, and 262 lb down and 454 lb up at 5-1-8, and 84 lb down and 161 lb up at 7-2-4, and 84 lb down and 161 lb up at 9-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
413220	13B	ROOF SPECIAL GIRDER	2	2	Job Reference (optional)	T16796540
TIBBETTS LUMBER COLLC			9	240 s Dec	c 6 2018 MiTek Industries Inc. Tue Apr 16 12:11:39 2019	Page 2

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:39 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-Pwsf_6sfYw_iS8wyu9KAi2Y?LztxIcTbVZ7tegzQ8ko

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-70, 3-5=-150, 6-11=-20 Concentrated Loads (lb) Vert: 3=-2305 8=248(F) 17=88(F) 18=88(F) 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-120, 6-11=-20 Concentrated Loads (lb) Vert: 3=-2049 8=248(F) 17=88(F) 18=88(F) 13) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-62, 3-5=-121, 9-11=12, 6-9=-20 Horz: 1-3=2, 4-5=1, 6-10=11 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2642(F=125) 8=406(F) 15=47(F) 16=47(F) 17=138(F) 18=138(F) 14) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-45, 3-5=-121, 6-11=-20 Horz: 1-3=-15, 4-5=1, 6-10=-40 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2155(F=107) 8=406(F) 15=47(F) 16=47(F) 17=138(F) 18=138(F) 15) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-61, 3-5=-121, 9-11=12, 6-9=-20 Horz: 1-3=1, 4-5=1, 6-10=19 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2845(F=124) 8=406(F) 15=47(F) 16=47(F) 17=138(F) 18=138(F) 16) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-61, 3-5=-121, 6-11=-20 Horz: 1-3=1, 4-5=1, 6-10=19 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2845(F=124) 8=406(F) 15=47(F) 16=47(F) 17=138(F) 18=138(F) 17) Reversal: Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-70, 3-5=-150, 6-11=-20 Concentrated Loads (lb) Vert: 3=-2305 8=454(F) 17=161(F) 18=161(F) 18) Reversal: Dead + 0.75 Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-120, 6-11=-20 Concentrated Loads (lb) Vert: 3=-2049 8=403(F) 17=143(F) 18=143(F) 28) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-62, 3-5=-121, 9-11=12, 6-9=-20 Horz: 1-3=2, 4-5=1, 6-10=11 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2780(F=-12) 8=-152(F) 15=-1(F) 16=-1(F) 17=-46(F) 18=-46(F) 29) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-3=-45, 3-5=-121, 6-11=-20 Horz: 1-3=-15, 4-5=1, 6-10=-40 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2287(F=-25) 8=-152(F) 15=-1(F) 16=-1(F) 17=-46(F) 18=-46(F) 30) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1 60 Uniform Loads (plf) Vert: 1-3=-61, 3-5=-121, 9-11=12, 6-9=-20 Horz: 1-3=1, 4-5=1, 6-10=19 Drag: 3-4=0 Concentrated Loads (lb) Vert: 3=-2982(F=-13) 8=-152(F) 15=-1(F) 16=-1(F) 17=-46(F) 18=-46(F) 31) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796540
413220	13B	ROOF SPECIAL GIRDER	2	2	
				_	Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:39 2019 Page 3

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:39 2019 Page 3 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-Pwsf_6sfYw_iS8wyu9KAi2Y?LztxIcTbVZ7tegzQ8ko

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-3=-61, 3-5=-121, 6-11=-20 Horz: 1-3=1, 4-5=1, 6-10=19

Drag: 3-4=0

Concentrated Loads (lb)

Vert: 3=-2982(F=-13) 8=-152(F) 15=-1(F) 16=-1(F) 17=-46(F) 18=-46(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

.OADING (p	osf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
rcll 20	0.0	Plate Grip DOL	1.25	тс	0.54	Vert(LL)	0.01	<u></u> 1	n/r	120	MT20	244/190
CDL 15	5.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	-0.03	1	n/r	120		
BCLL (0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10	0.0	Code FBC2017/T	912014	Matri	x-P						Weight 11 lb	FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-9-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 4=-64/1-9-0, 2=384/1-9-0 Max Horz 2=112(LC 12) Max Uplift 4=-64(LC 1), 2=-436(LC 12) Max Grav 4=163(LC 12), 2=384(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-4=-422/80

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3) -2-6-0 to 0-6-0, Exterior(2) 0-6-0 to 1-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2 = 436

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

									1-9-0			
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.82	Vert(LL)	0.00	9	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.23	Vert(CT)	0.00	9	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code FBC2017/TP	2014	Matri	k-MP	Wind(LL)	-0.01	9	>999	240	Weight: 10 I	b FT = 10%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS

REACTIONS. (lb/size) 2=378/0-8-0, 5=-57/Mechanical Max Horz 2=118(LC 12) Max Uplift 2=-421(LC 12), 5=-57(LC 1) Max Grav 2=378(LC 1), 5=145(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 1-9-0 zone; cantilever left
- and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=421.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-9-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y) [2:0-1-5,Edge]	1	1					1	
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (le	oc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.25	TC 0.82	Vert(LL)	0.00	9 :	>999	360	MT20	244/190
CDL 15.0	Lumber DOL 1.25	BC 0.22	Vert(CT)	0.00	9 :	>999	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MP	Wind(LL) -	-0.00	9 :	>999	240	Weight: 10 lb	FT = 10%

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2

 TOP CHORD
 Structural wood sheathing directly applied or 1-7-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=384/0-8-0, 5=-78/Mechanical

Max Horz 2=117(LC 12) Max Uplift 2=-437(LC 12), 5=-78(LC 1)

Max Grav 2=384(LC 1), 5=168(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 1-7-0 zone; cantilever left
- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 2=437.

AQUIN VEZAN No 68182 BO STATE OF NO RIDACINA SONAL ENGINE Joaquin Velez PE No.68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (p TCLL 20 TCDL 15 BCLL 0 BCDL 10	osf) 0.0 5.0 0.0 * 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TF	2-0-0 1.25 1.25 YES PI2014	CSI. TC BC WB Matri:	0.37 0.10 0.10 ĸ-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.2 No.2 No.2 No.2				BRACING- TOP CHOR BOT CHOR	D S e D I	Structur except e Rigid ce	al wood : and vertion illing dire	sheathing dire cals. ctly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 7-7-8.

- (lb) Max Horz 1=255(LC 9)
 - Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 6 except 7=-196(LC 12)
 - Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 7=330(LC 1)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-505/277, 2-3=-299/183
- WEBS 3-6=-115/317, 2-7=-283/588

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3) 0-0-0 to 3-0-0, Exterior(2) 3-0-0 to 7-5-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6 except (jt=lb) 7=196.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796545
413220	16B	GABLE	1	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		6	.240 s Dec	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:42 2019 Page 1

6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:42 2019 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-qVXoc7vYrrMGJbfXaHttKhAV_Bz5Vyd1BXMYF?zQ8kl

Scale = 1:38.3

will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 7, 258 lb uplift at joint 3 and 488 lb uplift at joint 4.

6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at 900, 1002/015 BEFORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796546
413220	16C	Jack-Closed	2	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL	·		3.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:43 2019 Page 1

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:43 2019 Page 1

Scale = 1:37.2

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

20 0

15.0

0.0

10.0

2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 7-0-1 oc bracing.

REACTIONS. (lb/size) 6=213/Mechanical, 5=228/Mechanical Max Horz 6=421(LC 9) Max Uplift 6=-138(LC 8), 5=-327(LC 9) Max Grav 6=357(LC 18), 5=341(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-6=-433/397, 1-2=-324/264, 2-5=-288/411
- BOT CHORD 5-6=-697/569 1-5=-512/698
- WEBS

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 6 and 327 lb uplift at ioint 5.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at 900, 1002/015 BEFORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0 <u>-</u> 3-8 0-3-8 Plate Offsets (X,Y) [7	<u>7-8-0</u> <u>7-4-8</u> 1:0-3-0,Edge], [2:0-1-8,Edge], [6:0-3-0,Ec 14:0-1-8,Edge], [15:0-4-4,Edge], [16:0-1-1-	dge], [8:0-1-8,Edge], [9:0-3 8,Edge]	7-9 <u>-8 8-9-8 9-9-8 0-1-8 1-0-0 1-0-0</u> 3-0,Edge], [10:0-1-8,E	15- 5-2 dge], [11:0-1-8,Edge], [12:0-3-12	0-8 3-0 2,Edge], [13:0-1-8,0-0	15-4-0 0-3-8 0-0],
LOADING (psf) TCLL 60.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-1-4-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.57 BC 0.56 WB 0.96 Matrix-S	DEFL. in Vert(LL) -0.1 ⁻¹ Vert(CT) -0.26 Horz(CT) -0.04	n (loc) l/defl L/d 14-15 >999 480 5 14-15 >673 360 9 n/a n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SP I BOT CHORD 2x4 SP I WEBS 2x4 SP I 2-15: 2x4	No.2(flat) M 31(flat) No.3(flat) *Except* 4 SP No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 (10-0-0 oc bracing.	oc purlins,
REACTIONS. (lb/size) FORCES. (lb) - Max. C	1=1346/0-3-0, 9=1346/0-3-0 Comp./Max. Ten All forces 250 (lb) or le	ess except when shown.				

TOP CHORD 1-2=-1529/0, 2-3=-3485/0, 3-4=-3485/0, 4-5=-4113/0, 5-6=-4113/0, 6-7=-3400/0,

7-8=-3400/0, 8-9=-1556/0

- BOT CHORD 15-16=0/1529, 14-15=0/4251, 13-14=0/4113, 12-13=0/4113, 11-12=0/1556
- WEBS 2-16=-1262/0, 1-16=0/1990, 8-11=-1267/0, 9-11=0/2025, 5-14=-140/318, 2-15=0/2134,
- 3-15=-478/0, 4-15=-839/0, 4-14=-443/178, 8-12=0/2012, 7-12=-266/116, 6-12=-1200/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Q-3-8		4-9-8	5-9-8	6-9-8	12-0-8	12-4-0
0-3-8		4-6-0	1-0-0	1-0-0	5-3-0	d-3-8 [']
Plate Offsets (2	X,Y)	[1:0-1-8,Edge], [2:0-3-0,Edge], [5:0-1-8,E	dge], [6:0-1-8,Edge], [9:0-1	-8,Edge], [10:0-1-8,E	dge], [11:0-1-8,Edge], [12:0-1-8,I	Edge], [13:0-1-12,Edge],
,	. ,	[14:0-1-8.0-0-0], [15:0-1-8.Edge], [17:0-1	-8.Edgel	, , , , , , ,		0 1.1
			-,			
LOADING (ps	f)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
TCLL 60.	Ó	Plate Grip DOL 1.00	TC 0.53	Vert(LL) -0.09	9 13-14 >999 480	MT20 244/190
TCDL 73.	0	Lumber DOL 1.00	BC 0.62	Vert(CT) -0.19	3 13-14 >747 360	
BCLL 0	0	Rep Stress Incr YES	WB 0.94	Horz(CT) -0.04	4 10 n/a n/a	
BCDI 5	0	Code FBC2017/TPI2014	Matrix-S			Weight: 70 lb $FT = 5\%F 0\%F$
		0000 1 2020 11/11 12011				
LUMBER-				BRACING-		
TOP CHORD	2x4 SP	No.2(flat) *Except*		TOP CHORD	Structural wood sheathing direct	ctly applied or 6-0-0 oc purlins.
	1-10.2	x4 SP M 31(flat)			except end verticals	
BOT CHORD	2x4 SP	M 31(flat)		BOT CHORD	Rigid ceiling directly applied or	10-0-0 oc bracing
WEBS	2x4 SP	No 3(flat) *Except*		201 0110112	ragia coming anocaly apprica of	re e e e braoing.
112BO	1-17 10	10:0(IIII) 2x00pt				
	1-17,10	= 12.2 + 01 + 10.2 (101)				
DEACTIONS	/lb/oize) 1-1604/0.2.0.10-1604/0.2.0				
REACTIONS.	(ID/SIZE	1=1604/0-3-0, 10=1604/0-3-0				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1695/0, 2-4=-3243/0, 4-5=-3243/0, 5-6=-3768/0, 6-7=-3536/0, 7-9=-3536/0, 9-10=-1722/0

BOT CHORD 16-17=0/1695, 15-16=0/3768, 14-15=0/3768, 13-14=0/3768, 12-13=0/1722

- WEBS 2-17=-1377/0, 1-17=0/2206, 9-12=-1406/0, 10-12=0/2241, 5-15=-21/257, 2-16=0/1759,
 - 4-16=-299/82, 9-13=0/1979, 7-13=-546/0, 6-13=-679/0, 5-16=-1159/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-3-8 6-9-0 0-3-8 Plate Offsets (X,Y)--[1:0-3-0,Edge], [4:0-1-8,Edge], [5:0-1-8,0-0-0], [8:0-3-0,Edge], [9:0-1-8,Edge], [10:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [13:0-1-8,Edge] LOADING (psf) SPACING-CSI. DEFL. PLATES GRIP 2-0-0 in (loc)I/defl I/d TCLL 60.Ó Plate Grip DOL 1.00 тс 0.53 Vert(LL) -0.02 >999 480 MT20 244/190 11 1.00 BC 0.44 >999 TCDL 73.0 Lumber DOL Vert(CT) -0.03 12 360 BCLL 0.0 Rep Stress Incr YES WB 0.52 Horz(CT) -0.01 8 n/a n/a BCDL 5.0 Code FBC2017/TPI2014 Matrix-S Weight: 44 lb FT = 5%F, 0%E LUMBER-BRACING-TOP CHORD 2x4 SP No.2(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.2(flat) except end verticals. 2x4 SP No.3(flat) WEBS BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

7-0-8

REACTIONS. (lb/size) 1=914/0-3-0, 8=914/0-3-0

0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-836/0, 2-4=-1186/0, 4-5=-1186/0, 5-7=-1186/0, 7-8=-836/0

BOT CHORD 12-13=0/836, 11-12=0/1186, 10-11=0/836

WEBS 2-13=-683/0, 1-13=0/1088, 7-10=-683/0, 8-10=0/1088, 2-12=0/690, 7-11=0/690, 4-12=-481/0, 5-11=-481/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

7-4-0

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at 900, 1002/015 BEFORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796550
413220	F4	Floor Supported Gable	2	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLO	C, LUTZ, FL		8	.240 s Dec	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:12:03 2019 Page 1

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:12:03 2019 Page 1 $ID: LTHF4EcV9 tayzxn_hS4O foznULZ-iYIk0J9 jul0IKqmZIBlog6X6 we8? wVB70 Ix9 UHzQ8 kQB10 k$

Scale = 1:29.5

	<u>5-6-4</u> 5-6-4	<u>17-9-4</u> 12-3-0					
Plate Offsets (X,Y)	[5:0-1-8,Edge], [14:0-0-0,0-0-12], [15:	0-0-0,0-0-12], [25:0-1-8,Edge]], [29:Edge,0-1-8], [30:	0-1-8,0-1-0]			
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.35 BC 0.12 WB 0.19 Matrix-R	DEFL.iVert(LL)n/:Vert(CT)n/:Horz(CT)0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 D 16 n/a n/a	PLATES GRIP MT20 244/190 Weight: 105 lb FT = 5%F, 0%E		
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.2(flat) P No.2(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc except end verticals. Rigid ceiling directly applied or	tly applied or 6-0-0 oc purlins, 10-0-0 oc bracing.		

REACTIONS. All bearings 17-9-4.

2x4 SP No.2(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) except 29=554(LC 1), 16=774(LC 1), 28=1237(LC 1), 27=1310(LC 1), 26=1256(LC 1), 25=1318(LC 1), 24=1259(LC 1), 23=1294(LC 1), 22=1282(LC 1), 21=1285(LC 1), 21=128 20=1282(LC 1), 19=1291(LC 1), 18=1252(LC 1), 17=1417(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-29=-534/0

WEBS 2-28=-1241/0, 3-27=-1292/0, 4-26=-1243/0, 5-25=-1305/0, 6-24=-1246/0, 7-23=-1280/0, 8-22=-1268/0, 9-21=-1271/0, 10-20=-1269/0, 11-19=-1277/0, 12-18=-1241/0,

13-17=-1397/0, 14-16=-751/0

NOTES-

OTHERS

- 1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.

- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Load case(s) 1, 2 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 8) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 9) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-29=-10, 1-15=-953
- 2) Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 16-29=-10, 1-15=-953

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at 900, 1002/015 BEFORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		7-10-10 8-10-1		0 9-10-10	17-9-4		
		7-10-10	1-0-0	1-0-0	7-10-10		
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,E	dge], [8:0-1-8,Edge], [10	:0-5-0,Edge], [11:0-3-0,	,0-0-0], [13:0-5-0,Edge], [14:Edge	,0-3-0], [15:0-1-8,0-1-0]	
LOADI TCLL TCDL BCLL BCDL	NG (psf) 40.0 73.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.64 BC 0.52 WB 0.64 Matrix-S	DEFL. Vert(LL) -0.1 Vert(CT) -0.4 Horz(CT) 0.0	in (loc) l/defl L/d 5 11-12 >999 480 5 11-12 >465 360 6 9 n/a n/a	PLATES G MT20 2 MT20HS 1 Weight: 129 lb	i RIP 44/190 87/143 FT = 5%F, 0%E
LUMB TOP C BOT C WEBS	ER- HORD 2x4 SI HORD 2x4 SI 2x4 SI	P M 31(flat) P M 31(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc except end verticals. Rigid ceiling directly applied or	tly applied or 5-2-3 oc p 10-0-0 oc bracing.	urlins,

REACTIONS. (lb/size) 14=2060/0-8-0, 9=2060/0-7-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-6510/0, 3-4=-6554/0, 4-5=-7752/0, 5-6=-6506/0, 6-7=-6462/0

BOT CHORD 13-14=0/4095, 12-13=0/7752, 11-12=0/7752, 10-11=0/7752, 9-10=0/4012

WEBS 2-14=-4468/0, 2-13=0/2662, 3-13=-571/0, 4-13=-1581/0, 7-9=-4395/0, 7-10=0/2700, 6-10=-573/0, 5-10=-1626/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are MT20 plates unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job		Truss		Truss Type			Qty	Ply	348 Shor	e Drive E.			T40700550
413220		F6		Floor Supported	Gable		1	1	Job Dofo	(antianal)			116796552
								9 240 o Do	JOD Refe	MiTek Industrion		6 12-12-07 20	10 Page 1
TIDDET IS LUT		C, LU12, FL				ID:LT	HF4EcV9ta	yzxn_hS40	DfoznULZ-I	oJYFshCDyWWj	pR3KX1qkqyirfF	WXsKYjxwv	Md2zQ8kM
0- <u>1</u> -18													0- <u>1-</u> 8
													Scale = 1:26.0
3x6	3x6	3x6	3x6	3x6	3x6	3x6	3x6	II	3x6	3x6	3x6	3x6	3x6
1	2	3	4	5	6	7	8		9	10	11	12	13
T 💾 🔤													
				I°									- PL
26	25	24	23	22	21	20	19		18	17	16	15	14

Plate Offsets (X,Y) [14:0-1-8,Edge], [27:0-1-8,0-1-0], [29:0-1-8,0-1-0] LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 40.0 Plate Grip DOL 1.00 TC 0.17 Vert(LL) n/a - n/a 999 MT20 244/190 TCDL 73.0 Lumber DOL 1.00 BC 0.02 Vert(CT) n/a - n/a 999 BCLL 0.0 Rep Stress Incr NO WB 0.10 Horz(CT) 0.00 14 n/a n/a BCDL 5.0 Code FBC2017/TPI2014 Matrix-R BRACING- VertQCT) Weight: 89 lb FT = 5%F, 0%E LUMBER- Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP No.2(flat) BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc paraging WEBS 244 SP No.2(flat) BOT CHORD EXCHORD BOT CHORD Structural wood sheathing directly ap	1			15-10-8			1
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0 SPACING- Plate Grip DOL 1.00 Lumber DOL 1.00 BCDL 5.0 CSI. TC 0.17 BC 0.02 WB 0.10 Matrix-R DEFL. Vert(LL) WE 0.02 WB 0.10 Matrix-R in (loc) 1/defl L/d L/d PLATES GRIP MT20 Vert(LL) n/a - n/a 999 MT20 MT20 244/190 WEBS Scole 5.0 Code FBC2017/TPI2014 WB 0.10 Matrix-R Natrix-R Weight: 89 lb FT = 5%F, 0%E LUMBER- TOP CHORD 2x4 SP No.2(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BTATES GRIP MT20 WEBS 244 SP No.2(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc paraging	Plate Offsets (X,Y)-	- [14:0-1-8,Edge], [27:0-1-8,0-1-0], [29:0-1	-8,0-1-0]				
BCDL 5.0 Code FBC2017/TPI2014 Matrix-R LUMBER- TOP CHORD 2x4 SP No.2(flat) BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP No.2(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNO	CSI. TC 0.17 BC 0.02 WB 0.10	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) l/defl L/d a - n/a 999 a - n/a 999 0 14 n/a n/a	PLATES GRI MT20 244	I P /190
LUMBER- TOP CHORD 2x4 SP No.2(flat) BRACING- TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. WEBS 2x4 SP No.2(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	BCDL 5.0	Code FBC2017/TPI2014	Matrix-R			Weight: 89 lb	FT = 5%F, 0%E
	LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	SP No.2(flat) SP No.2(flat) SP No.3(flat)	I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 oc pu 10-0-0 oc bracing.	ırlins,

15-10-8

2x4 SP No.2(flat) OTHERS

REACTIONS. All bearings 15-10-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14 except 26=260(LC 1), 25=744(LC 1), 24=745(LC 1), 23=740(LC 1), 24=745(LC 1), 23=740(LC 1), 24=745(LC 1), 24=745(LC 1), 25=740(LC 1), 25=74 1), 22=742(LC 1), 21=741(LC 1), 20=741(LC 1), 19=741(LC 1), 18=742(LC 1), 17=738(LC 1), 16=755(LC 1), 15=700(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-26=-254/0
- WEBS 2-25=-733/0, 3-24=-731/0, 4-23=-727/0, 5-22=-728/0, 6-21=-728/0, 7-20=-728/0,
 - 8-19=-728/0, 9-18=-729/0, 10-17=-725/0, 11-16=-741/0, 12-15=-691/0

NOTES-

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

- the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 2x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

- LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf)

Vert: 14-26=-10, 1-13=-546

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	6-1-12 6-1-12	7-1-12 8-1-12 1-0-0 1-0-0		15-10-8 7-8-12			
Plate Offsets (X,Y	') [4:0-1-8,Edge], [5:0-1-8,Edge], [8:0-1-8	Edge], [9:Edge,0-1-8], [10:0-2-8,Edge]	, [11:0-1-8,0-0-0], [12:0-1-8,Edge	∍], [13:0-3-8,Edge], [14:Edge,0-1-8],			
	[15:0-1-8,0-1-0], [17:0-1-8,0-1-0]	1 1					
LOADING (psf)	SPACING- 2-0-0	CSI. DEFI	. in (loc) l/defl	L/d PLATES GRIP			
TCLL 40.0	Plate Grip DOL 1.00	TC 0.73 Vert(L) -0.17 10-11 >999 4	480 MT20 244/190			
TCDL 73.0	Lumber DOL 1.00	BC 0.96 Vert(CT) -0.47 10-11 >399 🗧	360			
BCLL 0.0	Rep Stress Incr YES	WB 0.91 Horz	CT) 0.08 9 n/a	n/a			
BCDL 5.0	Code FBC2017/TPI2014	Matrix-S		Weight: 87 lb FT = 5%F, 0%E			
LUMBER-		BRAC	ING-				
TOP CHORD 2	x4 SP M 31(flat)	TOP C	HORD Structural wood she	athing directly applied or 5-9-4 oc purlins,			
BOT CHORD 2	x4 SP M 31(flat)		except end verticals	j.			
WEBS 22	x4 SP No.3(flat) *Except*	BOT C	HORD Rigid ceiling directly	/ applied or 2-2-0 oc bracing.			
7-	-10: 2x4 SP No.2(flat)						
REACTIONS. (I	lb/size) 14=1829/0-7-4, 9=1829/0-7-4						
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.							

TOP CHORD 2-3=-4910/0, 3-4=-4910/0, 4-5=-5754/0, 5-6=-5312/0, 6-7=-5312/0

BOT CHORD 13-14=0/3237, 12-13=0/5754, 11-12=0/5754, 10-11=0/5754, 9-10=0/3261

WEBS 4-12=0/295, 2-14=-3603/0, 2-13=0/1919, 3-13=-286/0, 4-13=-1375/0, 7-9=-3626/0,

7-10=0/2256, 6-10=-640/0, 5-10=-793/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type		Qty	Ply	348 Shore Drive E.				
412220	Eo	Elear Supported Cable		1	1				T1679	96554
413220	го	Floor Supported Gable		1		Job Reference (optiona	Ð			
TIBBETTS LUMBER CO LLC	C, LUTZ, FL	1		8	.240 s Dec	6 2018 MiTek Industri	es, Inc. Tue	e Apr 16 12:12:0	8 2019 Page	e 1
			ID:LTHF	4EcV9tay	zxn_hS4C	foznULZ-3V6d40Drjqea	QbeX5kLz	N9E0KfsQbmms	AafwAVzQ8k	٢L
									0-1	-1 ⁸
									Scale =	1:28.0
3x6 3x6	3x6	3x6	3x6 3x6	5	3x6	3x6 3x	6	3x6 ;;	3x6 3x6	I
1 2	3 4	5 6	7 8		9	10 11		12	13 14	
					-					Ī
				ļ	Щ		1		ЩЦ	
4									II HI	30 4
				1	H			H	H H	29
										1
28 27	26 25	24 23	22 21		20	19 18		17	16 15	
3x4										

1			16-11-4			1
Plate Offsets (X,Y)	[15:0-1-8,Edge], [28:Edge,0-1-8], [29:0-1	-8,0-1-0]				
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.18 BC 0.04 WB 0.10 Matrix-R	DEFL. Vert(LL) n. Vert(CT) n. Horz(CT) 0.0	in (loc) l/defl L/d /a - n/a 999 /a - n/a 999 /0 15 n/a n/a	PLATES (MT20 2 Weight: 97 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.2(flat) P No.2(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ectly applied or 6-0-0 oc r 10-0-0 oc bracing.	purlins,

16-11-4

REACTIONS. All bearings 16-11-4.

2x4 SP No.2(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 15 except 28=281(LC 1), 27=762(LC 1), 26=741(LC 1), 25=741(LC 1), 25=74 1), 24=741(LC 1), 23=741(LC 1), 22=741(LC 1), 21=741(LC 1), 20=741(LC 1), 19=743(LC 1), 18=735(LC 1), 17=770(LC 1), 16=608(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-28=-279/0 WEBS
 - 2-27=-745/0, 3-26=-728/0, 4-25=-728/0, 5-24=-728/0, 6-23=-728/0, 7-22=-728/0,
 - 8-21=-728/0, 9-20=-728/0, 10-19=-729/0, 11-18=-722/0, 12-17=-755/0, 13-16=-607/0

NOTES-

OTHERS

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

- the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 2x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf)
 - Vert: 15-28=-10, 1-14=-546

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safev Information** available from Truss Plate Institute. 218 N. Lee Street. Suite 312. Alexandria, VA 22314. fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-11-4)-6-12 10 ₁ 8 ₁ 4	16-0-12	
	7-11-4		'0-7-8 ' 1-0-0 ' ⁻	1-0-0 0-1-8	5-4-8	
Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge], [8:0-1-8,E	dge], [10:0-1-8,Edge], [12	2:0-3-8,Edge], [14:0-1-8	3,0-1-0], [16:0-1-8,0-1-0]		
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code EBC2017/TPI2014	CSI. TC 0.76 BC 0.67 WB 0.74 Matrix-S	DEFL. i Vert(LL) -0.1 Vert(CT) -0.4 Horz(CT) 0.0	in (loc) l/defl L/d 5 11-12 >999 480 4 11-12 >427 360 4 9 n/a n/a	PLATES MT20 Weight: 108 lb	GRIP 244/190
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S 2-12,	P M 31(flat) P M 31(flat) P No.3(flat) *Except* 7-10: 2x4 SP No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	rectly applied or 5-4-14 c	pc purlins,

REACTIONS. (lb/size) 13=1851/0-8-0, 9=1851/0-7-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-5650/0, 3-4=-5650/0, 4-5=-5946/0, 5-6=-5946/0, 6-7=-5946/0

BOT CHORD 12-13=0/3483, 11-12=0/6145, 10-11=0/5946, 9-10=0/3536

6-10=-688/0, 2-13=-3838/0, 2-12=0/2361, 3-12=-508/0, 4-12=-687/0, 4-11=-450/91,

WEBS 7-9=-3895/0, 7-10=0/2608

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-	
TOP CHORD	2x4 S

BRACING-P No.2(flat) TOP CHORD Structural wood sheathing directly applied or 3-7-4 oc purlins, BOT CHORD 2x4 SP No.2(flat) except end verticals. 2x4 SP No.3(flat) WEBS BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.2(flat)

REACTIONS. All bearings 3-7-4.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 5 except 8=258(LC 1), 7=768(LC 1), 6=633(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-8=-251/0

WEBS 2-7=-757/0, 3-6=-623/0

NOTES-

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

2) Plates checked for a plus or minus 0 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10 1-4=-546

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	8-2-12	9-2-12	10-2-12 10-10-4	18-8-12		1
	8-2-12	1-0-0	1-0-0 0-7-8	7-10-8		
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,0	-0-0], [10:0-1-8,Edge], [1	2:0-5-0,Edge], [15:0-5-	-0,Edge], [16:Edge,0-3-0], [17:0-1-8	3,0-1-0]	
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.95 BC 0.56 WB 0.70 Matrix-S	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.0	in (loc) l/defl L/d 19 13-14 >999 480 55 13-14 >399 360 07 11 n/a n/a	PLATES 0 MT20 2 MT20HS 7 Weight: 136 lb	GRIP 244/190 187/143 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 3 BOT CHORD 2x4 3 WEBS 2x4 3	SP M 31(flat) SP M 31(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc except end verticals. Rigid ceiling directly applied or 1	tly applied or 1-7-8 oc 10-0-0 oc bracing.	ourlins,

REACTIONS. (lb/size) 16=2173/0-8-0, 11=2173/0-7-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-6978/0, 3-4=-7024/0, 4-5=-8595/0, 5-6=-8595/0, 6-7=-8595/0, 7-8=-6978/0, 8-9=-6932/0

BOT CHORD 15-16=0/4354, 14-15=0/8315, 13-14=0/8595, 12-13=0/8270, 11-12=0/4270

5-14=-466/0, 6-13=-424/0, 2-16=-4751/0, 2-15=0/2894, 3-15=-513/0, 4-15=-1535/0, 9-11=-4677/0, 9-12=0/2937, 8-12=-515/0, 7-12=-1499/0, 7-13=0/768, 4-14=0/786

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are MT20 plates unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-2-12	9-2-12 10-2-12	18-5-8	3		23-8-12	
Ι	8-2-12	1-0-0 1-0-0	8-2-12	2	I	5-3-4	
Plate Offsets (X,Y) [1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8	Edge], [11:0-3-0,Edge], [1	3:0-1-8,Edge], [15:0-3-0),Edge], [19:0-3-0,0	0-0-0], [22:0-3	3-12,Edge], [23:Edge,0	-3-0],
	[24:0-1-8,0-1-0]						
		001		n (las) l/dafi	1/4		CDID
TOLL (psi)	SPACING- 2-0-0				L/0	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	IC 0.81	Vert(LL) -0.1	5 20-22 >999	480	MT20UC	244/190
TCDL 73.0	Lumber DOL 1.00	BC 0.59	Vert(CT) -0.4	3 20-22 >508	360	MIZUHS	187/143
BCLL 0.0	Codo EBC2017/TEI2014	VVB 0.99 Motrix S	Horz(CT) 0.04	4 15 n/a	n/a	Woight: 160 lb	
BCDL 5.0	Code FBC2017/1F12014	Watrix-S				Weight. 109 lb	FT = 576F, 076E
			BRACING.				
	A SP M 31/flat)			Structural wood	sheathing dire	octly applied or 5-6-4 o	c purline
BOT CHORD 2	A SP M 31(flat) *Except*			except and vertic	sileau ili ig uile	city applied of 5-0-4 of	e pullins,
1/	-16: 2x4 SP No 2(flat)			Rigid ceiling dire	ais. ctly applied or	10-0-0 oc bracing	vcent:
WEBS 2v	4 SP No 3(flat) *Excent*		DOT ONORE	6-0-0 oc bracing	15-17 14-15		
11	-17: 2x4 SP No 2(flat)			0 0 0 00 bracing	10 17,14 10.		
REACTIONS. (II	o/size) 23=1858/0-8-0, 14=-502/0-7-4, 15=	4170/0-8-0					
Ň	ax Uplift 14=-698(LC 3)						
M	ax Grav 23=1860(LC 3), 15=4170(LC 1)						
FORCES. (lb) - I	Max. Comp./Max. Ten All forces 250 (lb) or	less except when shown.					
TOP CHORD	2-3=-5631/0, 3-4=-5675/0, 4-5=-6130/0, 5-6=	-6130/0, 6-7=-3886/0, 7-8	=-3843/0,				
:	8-10=0/2738, 10-11=0/2717, 11-12=0/4687						
BOT CHORD	22-23=0/3661, 20-22=0/6230, 19-20=0/6130	18-19=0/6130, 17-18=0/7	65, 15-17=-4687/0,				
	14-15=-1899/0						
WEBS	6-19=0/407, 11-15=-2662/0, 2-23=-3995/0, 2	-22=0/2173, 3-22=-502/0,	4-22=-764/0,				
	6-18=-2520/0, 7-18=-582/0, 8-18=0/3403, 8-	17=-4014/0, 10-17=-262/0,	11-17=0/3001,				
	12-14=0/2081, 12-15=-3345/0, 4-20=-354/15	8					
						Nº OU	IN VEIL
NOTES-						N'OA.	E.
1) Unbalanced flo	or live loads have been considered for this d	esign.				S 3 10	ENSAT
2) As requested, p	plates have not been designed to provide for	placement tolerances or ro	ough handling and erect	tion conditions. It i	S	1 1 1 V	
the responsibility of the fabricator to increase plate sizes to account for these factors.							
3) All plates are M	120 plates unless otherwise indicated.					- E + F	
4) The Fabrication	I olerance at joint $21 = 0\%$					Ξ ^:	AL : 1
5) Plates checked	tor a plus or minus 0 degree rotation about i	ts center.					
6) Provide mecha	nical connection (by others) of truss to bearing	ig plate capable of withsta	nding 698 lb uplitt at joir	nt 14.		= = =	
 Recommend 2x Other advantage 	to strongbacks, on edge, spaced at 10-0-0 o	c and fastened to each tru	ss with 3-10d (0.131" X	. 3°) nails.		STA	THE OF
Strongbacks to be attached to waits at their outer ends of restrained by other means.							

8) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	8-0-0	8-2-12 9-2-12 10-2-12	18-5-8	
	8-0-0	0-2-12 1-0-0 1-0-0	8-2-12	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,0	-0-0], [11:Edge,0-3-0], [12:0-5-0,Edge],	[15:0-5-0,Edge], [16:Edge,0-3-0]	
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. DEFL. TC 0.77 Vert(LL) BC 0.53 Vert(CT) WB 0.68 Horz(CT) Matrix-S Horz(CT) Horz(CT)	in (loc) I/defl L/d PLATES) -0.18 13-14 >999 480 MT20 [) -0.53 13-14 >413 360 T) 0.07 11 n/a n/a Weight: 136 lt	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 3 BOT CHORD 2x4 3 WEBS 2x4 3	SP M 31(flat) SP M 31(flat) SP No.3(flat)	BRACIN TOP CHO BOT CHO	IG- ORD Structural wood sheathing directly applied or 3-10-0 except end verticals. IORD Rigid ceiling directly applied or 10-0-0 oc bracing.	0 oc purlins,

REACTIONS. (lb/size) 16=2149/0-8-0, 11=2149/0-8-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-6872/0, 3-4=-6918/0, 4-5=-8402/0, 5-6=-8402/0, 6-7=-8402/0, 7-8=-6918/0, 8-9=-6872/0

BOT CHORD 15-16=0/4300, 14-15=0/8152, 13-14=0/8402, 12-13=0/8152, 11-12=0/4300

5-14=-448/0, 6-13=-448/0, 2-16=-4692/0, 2-15=0/2838, 3-15=-512/0, 4-15=-1472/0, 9-11=-4692/0, 9-12=0/2838, 8-12=-512/0, 7-12=-1472/0, 4-14=0/735, 7-13=0/735

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796562
413220	F16	Floor Supported Gable	1	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	LUTZ. FL		8	.240 s Dec	: 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:48 2019 Page 1

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:48 2019 Page 1 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-efu3tBzIRh7Q1W6hwY_HZxPbQb1tvkrwZTpsSfzQ8kf

Scale = 1:30.8

1			18-5-8		ļ	
Plate Offsets (X,Y)	[30:Edge,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.18 BC 0.03 WB 0.10	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	in (loc) l/defl L/d /a - n/a 999 /a - n/a 999 /a 16 n/a n/a	PLATES GRIP MT20 244/190	
BCDL 5.0	Code FBC2017/TPI2014	Matrix-R			Weight: 107 lb FT = 5%F, 0%E	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.2(flat) No.2(flat)		BRACING- TOP CHORD	Structural wood sheathing dire except end verticals.	ectly applied or 6-0-0 oc purlins,	

18-5-8

Dr	KACING-	
at) TC	OP CHORD S	Structural wood sheathing directly applied or 6-0-0 oc purlins,
at)	e	except end verticals.
at) BC	OT CHORD F	Rigid ceiling directly applied or 10-0-0 oc bracing.
at)		
1: 1: 1: 1:	lat) T(lat) lat) B(lat)	lat) TOP CHORD S lat) EDT CHORD F lat) BOT CHORD F lat)

REACTIONS. All bearings 18-5-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16 except 30=293(LC 1), 29=747(LC 1), 28=744(LC 1). 27=741(LC 1). 1), 26=741(LC 1), 25=741(LC 1), 24=741(LC 1), 23=741(LC 1), 22=741(LC 1), 21=741(LC 1), 20=742(LC 1), 19=737(LC 1), 18=761(LC 1), 17=669(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-30=-287/0 WEBS
 - 2-29=-735/0, 3-28=-730/0, 4-27=-727/0, 5-26=-728/0, 6-25=-728/0, 7-24=-728/0, 8-23=-728/0, 9-22=-728/0, 10-21=-728/0, 11-20=-729/0, 12-19=-724/0, 13-18=-746/0, 14-17=-663/0

NOTES-

- 1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
						T16796563
	413220	F17	Floor Supported Gable	1	1	
						Job Reference (optional)
1	TIBBETTS LUMBER CO LLO	C. LUTZ. FL		8	.240 s Dec	: 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:48 2019 Page 1

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:48 2019 Page 1 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-efu3tBzIRh7Q1W6hwY_HZxPbYb1qvkvwZTpsSfzQ8kf

0-1₁8

Scale = 1:33.1

H			19-10-8 19-10-8		
Plate Offsets (X,Y)	[18:0-1-8,Edge], [34:Edge,0-1-8], [35:0-1	1-8,0-1-0]			
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.17 BC 0.03 WB 0.10 Matrix-R	DEFL.in(loc)Vert(LL)n/a-Vert(CT)n/a-Horz(CT)0.0018	l/defi L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 113 lb FT = 5%F, 0%E
BRACING- TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.					

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2(flat)	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.2(flat)		

REACTIONS. All bearings 19-10-8.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 18 except 34=274(LC 1), 33=731(LC 1), 32=715(LC 1). 31=715(LC 1), 30=715(LC 1), 28=715(LC 1), 27=715(LC 1), 26=715(LC 1), 25=715(LC 1), 24=715(LC 1), 23=715(LC 1), 22=715(LC 1), 21=711(LC 1), 20=729(LC 1), 19=666(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-34=-271/0

WEBS 2-33=-715/0, 3-32=-702/0, 5-31=-701/0, 6-30=-701/0, 7-28=-701/0, 8-27=-701/0, 9-26=-701/0, 10-25=-701/0, 11-24=-701/0, 12-23=-701/0, 13-22=-702/0, 14-21=-698/0, 15-20=-714/0, 16-19=-660/0

2x4 ||

NOTES-

- 1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 18-34=-10, 1-17=-526

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REFERENCE PAGE mit-14/3 at 900, 1002/015 BEFORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					8-9-12							
F		6-8-4		7-8-4	8-8-4	13-1-4			1		19-10-8	
		6-8-4		' 1-0-0	' 1-0-0 0-1-'8	4-3-8					6-9-4	1
Plate Off	sets (X,Y)	[2:0-3-4,Edge], [4:0-1-8,	Edge], [5:0-1-8,	0-0-0], [14:	0-3-0,Edge],	[15:0-1-8,Edge], ['	6:0-1-8	8,Edge]	, [20:0-1	-8,0-1-0], [22	2:0-1-8,0-1-2]	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.89	Vert(LL)	-0.12	16-17	>999	480	MT20	244/190
TCDL	73.0	Lumber DOL	1.00	BC	0.87	Vert(CT)	-0.35	16-17	>440	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.86	Horz(CT)	0.05	12	n/a	n/a		
BCDL	5.0	Code FBC2017/1	FPI2014	Mati	ix-S						Weight: 102 lb	FT = 5%F, 0%E
LUMBER	१-	1				BRACING-						
TOP CH	ORD 2x4 SP	No.2(flat) *Except*				TOP CHOP	D	Structu	iral wood	I sheathing d	lirectly applied or 2-2-0	oc purlins, except
	1-9: 2x	4 SP M 31(flat)						end ve	rticals.	-		
BOT CHORD 2x4 SP No.2(flat) *Except* BOT CHORD Rigid ceiling directly applied or 10-0-0 oc braci						or 10-0-0 oc bracing,	Except:					
	12-18:	2x4 SP M 31(flat)						6-0-0 o	c bracing	g: 13-14.		
WEBS	2x4 SP	No.3(flat)										
DEACT												
REACTION	UNS. (ID/SIZE	e) 14=2573/0-8-0 (min	. 0-1-8), 19=14;	30/0-7-4 (n	nin. 0-1-8), 12	2=583/0-7-4 (min.	0-1-8)					
	wax G	1av 14=2573(LC 1), 19=	1438(LC 3), 12	=649(LC 7)								
FORCES	(lb) - Max	Comp /Max Ten - All fo	arces 250 (lb) o	r less evce	ot when show	'n						
TOPCH	$OPD 2_3 = -$	3639/0 3-4-3639/0 4-4	53331/0 5-6-	-3331/0 6	-24-0/1084 7	7-24-0/1084						
	ORD 2-3=-	-0/2515 17 19-0/2515	16 17_0/2221	15 16-0/2	221 1/ 15_(1/1075						
	URD 10-18	= 0/2515, 17-16= 0/2515	, 10-17=0/3331	, 15-16=0/3	5551, 14-15=0	J/1975,						
	13-14	F=-1064/0, 12-13=0/650	14 10000 0 4	0 0704/0	0 47 0/4040	0.0.47 000/0						
VVEB3	4-16=	=-329/0, 3-13=-746/0, 7-	14=-1329/0, 2-1	9=-2781/0	, 2-17=0/1243	5, 3 - 17 = -020/0,						
	4-17=	=0/518, 6-14=-3103/0, 6-	15=0/1674, 10-	12=-942/0,	10-13=-927/	0, 8-13=-381/0,						
	7-13=	=0/1195										

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 13=801/0-8-0, 20=1411/0-7-4, 15=2769/0-8-0 Max Grav 13=849(LC 7), 20=1426(LC 3), 15=2769(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3593/0, 3-4=-3593/0, 4-5=-3258/0, 5-6=-3258/0, 6-8=0/1243, 8-9=0/1226, 9-10=-1134/0, 10-11=-1134/0 BOT CHORD 18-20=0/2491, 17-18=0/3258, 16-17=0/3258, 15-16=0/1883, 14-15=-409/26, 13-14=0/1269 4-17=-347/0, 5-16=-764/0, 8-15=-533/0, 2-20=-2754/0, 2-18=0/1217, 3-18=-640/0, WEBS 4-18=0/582, 6-15=-3119/0, 6-16=0/1717, 11-13=-1403/0, 11-14=-322/0, 10-14=-531/0, 9-14=0/1424. 9-15=-1253/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are MT20 plates unless otherwise indicated.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Plates checked for a plus or minus 0 degree rotation about its center.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER VETERCING FAGE MILETATION 1997. INVALUED BLI ONE OCC.
Design valid for use only with MITEK® connectors. This design is based only upon parameters and properly incorporate this design into the overall
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component
ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

The second seco	Job	Truss	Truss Type	Oty Ply	348 Shore Drive F					
$\frac{1}{1000} \qquad 1000 More than the set of the set o$	412220	F30	Floor Cirdor	1	1	T16796566				
THEOREM COULD. LUTE TIME IN THE TABLE AND	413220	F20	Floor Girder	1	Job Reference (option	al)				
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	TIBBETTS LUMBER CO	LLC, LUTZ, FL		8.240 ID:LTHF4EcV9tayzxn_h	s Dec 6 2018 MiTek Industr S4OfoznULZ-3EaBVC0BjcV	es, Inc. Tue Apr 16 12:11:51 2019 Page 1 ?u_rGbgX_Ba1vGpsb6uZMFR1W3_zQ8kc				
$ \begin{array}{c} 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	0-1-8									
$\frac{1}{10^{10}} + \frac{1}{10^{10}} + \frac{1}{10^{10}$		— I F	1-2-4 2-0-0 1-8-0	0 ₁ 5-1	2-1-12	0-1-8 Scale - 1:35 7				
<complex-block> 21 10 21 24 10 24 10 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td>- 1.50.7</td></th1<></complex-block>						- 1.50.7				
applied bpcp cpc cpc<										
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $										
$P_{12} = 40^{2} - 3 + 4 + 9 + 50^{2} - 5 + 2 + 5 + 9 + 5 + 1 + 3 + 5 + 5 + 1 + 5 + 5 + 1 + 5 + 5 + 1 + 5 + 5$	2x4			MSF	1422	2x4				
$\begin{array}{c} \begin{array}{c} 1 \\ \hline \\$	2x4 =	4x8 =	,	5x10 =	5x8 = 3x4 =	3x6 FP = 2x4 =				
$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	۱ ۲				8 9 					
Application	\$4									
21 20 10 <td< td=""><td>Σ3</td><td></td><td></td><td></td><td></td><td></td></td<>	Σ3									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21 20	10 19	<u> </u>	3x4 14					
1949 1949 1949 10000 1000 1000 1	22	3x6 FP =	2x4 4x5 =	17 16 4x12 =	15 3x4 11 14 3x8 =	3x4 =				
Line Line Line 1 1.4.3 1.4.3 1.4.3 1 1.4.3 1.4.3 1.4.3 1 1.4.3 1.4.3 1.4.3 1 1.4.3 1.4.3 1.4.3 1 1.4.3 1.4.3 1.4.3 1 1.4.3 1.4.3 1.4.3 1.4.3 1 1.4.3 1.4.3 1.4.3 1.4.3 1.4.3 1 1.4.3 <										
Light Light Light Light Control 20-13 20-13 20-13 Control 20-13 20-13 20-13 20-13 Control 20-13 Control 20-13 20-13 20-13 Control 20-13 Control 20-13 20-										
13-10 13-10 13-10 13-10 12 13-34 13-34 72-12 Place Ollseis (X,7) [20-312.Edge], [50-30.00-00, [60-50-50.dge], [50-14.Edge], [120-14.Edge], [120-14.Edge]										
Log Log <thlog< th=""> <thlog< th=""> <thlog< th=""></thlog<></thlog<></thlog<>			40.0.40	13	-10-0	24.5.42				
Productions (X,Y) [2:0:1-3:0:0-0:0], [6:0:5-0.Edge], [8:0-1-8.Edge], [1:0:0-1-8.Edge], [1:0:0-1-8.			12-8-12	1-0-8		7-7-12				
LOADING cput SPACE PLATES SRIP TCDL 400 FMR 600 20-0 TC 0.97 Vert(L) -0.07 15:20 -70.3 800 BCLL 0.0 Rep Stress Incr NO BC 0.00 BC 0.00 FC 0.97 Vert(L) -0.07 15:20 >70.3 800 Waght: 133 lb FT = 5%F, 0%E LUMBER TOP CHORD 2.4.49 PM 0.2(IIII) ************************************	Plate Offsets (X,Y) [2	2:0-3-12,Edge], [5:0-3-0,0-0	0], [6:0-5-0,Edge], [8:0-1-8,Edge], [1	12:0-1-8,Edge], [14:0-3-4,Edg	. <u>0-12</u> ge], [18:0-1-8,Edge], [19:0-1	-8,Edge], [23:0-1-8,0-1-0],				
LOADING (ps) TCLL SPACING- (a) (b) 2-0-0 (b) CSL (b) OBSL (c) DEFL (c) In (bod) (c) DEFL (c) In (b) DEFL (c) In (c) DEFL (c) <thd)< th=""> DEFL (c) <thd)< th=""></thd)<></thd)<>	[2	25:0-1-8,0-1-0]								
1CDL 720 Lumber FOLD 100 BC 0 80 Vert(CT) 0.21 19:20 - 703 300 Minto Weight: 133 lb FT = 5%F, 0%E BCDL 5.0 Rep Stress intor Minto-S BRACINC- Weight: 133 lb FT = 5%F, 0%E LUMER- TOP CHORD 24.6 Ph 0.2 (flat) "Except" BRACINC- TOP CHORD Structural wood sheathing directly applied or 6-0.0 oc putints, except red verticals. 0.7 CHORD 24.4 SP No.2 (flat) "Except" BOT CHORD Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 4.24 SP No.2 (flat) "Except" BOT CHORD Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 4.24 SP No.3 (flat) Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 4.43 SP No.3 (flat) Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 1.44 SP No.3 (flat) Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 4.43 SP No.3 (flat) Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 3.24 SP No.3 (flat) Structural wood sheathing directly applied or 6-0.0 oc bracing, Except: 1.10.2 3.24 SP No.3 (flat) Structural wood sheathing directly appl	LOADING (psf)	SPACING- 2	-0-0 CSI.	DEFL. in (I	oc) I/defl L/d	PLATES GRIP				
BCLL 0.0 Rep Stress (nr _ NO WB 0.87 Horz(CT) 0.03 16 n/a Weight: 133 lb FT = 5%F, 0%E LUMBER: TOP CHORD 24.57 No.2/fm) TExcept BRACINC: TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except: BRACINC: TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. Except: 1.01: 264 SP No.2/fm) 3.01 (264) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. Except: 1.02: 264 SP No.2/fm) 3.01 (264) BOT CHORD Ripid colling/directly applied or 10-0-0 oc bracing. Except: 1.02: 264 SP No.2/fm) BOT CHORD Ripid colling/directly applied or 10-0-0 oc bracing. Except: 1.02: 264 SP No.2/fm) BOT CHORD Ripid colling/directly applied or 10-0-0 oc bracing. Except: 1.02: 264 SP No.2/fm) Max Upilit 100 lb or less at joint(5) 17 Max Grav All reactions 250 the or less except when above. 100 CHORD 2-2-a-11880; 24-a-3180; 04-a-3180; 04	TCDL 73.0	Lumber DOL	1.00 BC 0.80	Vert(CT) -0.21 19	-20 >999 480 -20 >703 360	WI120 244/190				
LUMBER- TOP CHORD 2x4 SP No.2(fai) "Except" TOP CHORD Structural wood sheating directly applied or 64-0 oc purlins, except end verlinds. BOT CHORD 2x4 SP No.2(fai) "Except" BOT CHORD Structural wood sheating directly applied or 64-0 oc purlins, except end verlinds. REACTIONS. At Sen No.2(fai) "Except" BOT CHORD Rigd celling directly applied or 10-0-0 oc bracing. Except: 64-0-0 oc bracing. 15-16,14-15. REACTIONS. At bearings 14-0 except (failength) 13-0-8-0, 22-0-7-4, 17=0-3-8. Rigd celling directly applied or 10-0-0 oc bracing. Except: 64-0-0 oc bracing. 15-16,14-15. REACTIONS. At bearings 14-0 except (failength) 13-0-8-0, 22-0-7-4, 17=0-3-8. Rigd celling directly applied or 10-0-0 oc bracing. Except: 64-0-0 oc bracing. 51-16,14-15. FORCES. (i) - Max. Comp.Atx. Tan All forces 250 (b) or less except when shown. 70 CP CHORD 22-240/2208, 10, 51-9-2810, 0, 57-0-28100, 67-00/2076, 84-8-5720, 911-9-650. Not 10-100 (c 1), 15-1431(LC 4), 15-1000(LC 1), 84-8-520, 0, 11-10-0640, 0, 22-0/2281, 17-18-0993, 15-16-1327/0, 8-14-0/1828, 8-16-1429/0 Not 68182 NUESS • 15-14400, 71-16-6840, 0, 11-0-01640, 12-22-2527/0, 2-20-0997, 3-20-6840, 8-14-0/1828, 8-16-1429/0 Not 68182 Not 10-100 two loads have been considered for this design. No 6 8182 No 6 8182 3 Af plates are 3x6 MT20 unless otherwise indicated. No 6 8182 No 6 8182 9 Haid and holds where hange is in contator with	BCLL 0.0 BCDL 5.0	Rep Stress Incr Code FBC2017/TPI20	NO WB 0.87 014 Matrix-S	Horz(CT) 0.03	16 n/a n/a	Weight: 133 lb FT = 5%F. 0%E				
Direction Drocking Drocking Direction 2x4 SP No.2(116) *Except* TOP CHORD Suscept end verticable, scopt end verticable, 327 2x4 SP No.2(116) *Except* BOT CHORD Suscept end verticable, scopt end verticable, 327 2x4 SP No.2(116) *Except* BOT CHORD Suscept end verticable, scopt end verticable, 327 2x4 SP No.2(116) *Except* BOT CHORD Rigid calling directly applied or 10-0-0 oc bracing. Except 6-0-0 oc bracing: 15-16,14-15. WEBS 2x4 SP No.3(161) Tor ChorD Rigid calling directly applied or 10-0-0 oc bracing. Except 6-0-0 oc bracing: 15-16,14-15. WEBS 2x4 SP No.3(161) Tor ChorD Suscept end verticable, 6-0-0 oc bracing: 15-16,14-15. FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3-31880, 34-31820, 4-58-20130, 6-78-022076, 8-9-5720, 9-11-65500 BOT CHORD 2-02-20240, 192-20-20243, 192-0-20210, 2-72-00993, 15-16-13270, 14-16-01828, 9-16-14200 No BOT CHORD 2-02-20240, 192-202431, 16-19-00218, 17-13-10770, 11-14-6810, 9-14-62770, 8-14-601828, 9-16-14200 No 9 Dista set of SM T20 unless therwise included. 9 Less there dista have been considered for this design. No 10 Unbainmed floor live loads have been considered for this design. No 68182 No 10 Less De NoH2 Less there Ano				PRACINC						
 1-10: 2x4 SP M 31(161) BOT CHORD Add SP M 31(161) BOT CHORD Regide celling directly applied or 10-0-0 oc bracing. Except: 3-21: 2x4 SP M 31(161) REACTIONS. All bearings 1-4-0 except (j=length) 13-0-8-0, 22=0-7-4, 17=0-3-8. (b) Max Upilt All upilt 100 for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Grav All reactions 250 lb for less at joint(s) 17 Max Donp, Max. Ten All forces 250 (fb) or less except when shown. 2-2-2-20280 lb -16-80280 (j -18=0/2040), 52-2-202076, 7-2-202076, 7-2-202076, 4-2-20-20092, 7-2-20-2097, 2-20-0997, 3-20-6540 (j -2-20-2020, 2-20-2028), 2-20-20281 (j -2-20-2028), 2-20-2028, 1-12-6800 (j -18=0/2048), 1-13=-1077/0, 11-14=-5810, 9-14=-527/0, 8-14=-01828, 8-16=-14290 Mot Bats are 3:6 MT20 unless otherwise indicated. Plates are 3:6 MT20 unless otherwise indicated. Storoplacks to be attached to walls at their outer ends or restrained by other means. CAUTCON, Do other act tuss backwards. Ubel Jone ter Cuttus backwards. Ubel Jone Charles of the chard of the face of the truss are noted as front (F) or back (B). CAUTC	TOP CHORD 2x4 SP 1	No.2(flat) *Except*		TOP CHORD Str	uctural wood sheathing dire	ectly applied or 6-0-0 oc purlins,				
 13-21: 224 SP M 31(flai) 6-0-0 oc bräcing: 15-16,14-15. WEBS 24 SP No.3(flai) REACTIONS: All bearings 1-0-except (It=length) 13=0-8-0, 22=0-7-4, 17=0-3-8. (b) - Max Upilit: All upilit 100 bor less at joint(s) 17 except 13=692(LC 1), 15=1431(LC 4), 15=1000(LC 1), 16=3198(LC 3), 22=1331(LC 3) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. TOP CHORD: 0-22=0-228.6 (b) - 14=-565.0 BOT CHORD: 0-22=0-228130, 0-5=-0-22100, 0-5=-0-22100, 5-16=-213270, 4-20=00620, 6-16=-32800, 0-6-8=20310, 0-5=-0-22103, 1-6=-142310, 0-7-0-0293, 1-6-16=-13270, 4-20=00620, 6-16=-32800, 0-6-8=0-2710, 9-11=-651.0 NOTES NOTES 1) Unbargenetide platis have not been considered for this design. 1) As regulation to imprase platis indicated. 1) Plates checking to imprase plate size to account for these factors. 3) All plates are 366 MT20 unless otherwise indicated. 1) Plates checking to imprase plate in their outer ond or restrained by other means. 1) CADI CASE(S) Standard 1) On the LOAD CASE(S) section, leads at 10-0-0 con distanted to each trus with 3-100 (0.131' X 3') nails. Strongbacks to be attached to valis at their outer ends or restrained by other means. 1) CADI CASE(S) Standard 1) Dad + Floor Live (balanced): Lumber Increase=1.00 CONTINUE Contract with lumber. 1) Dated + Floor Live (balanced): Lumber Increase=1.00. Plate Increase=1.00. Plate StateContex on the state and or spatial baby on the provide the face of the truss are noted as front (F) or back (B). CONTINUE Contract with lumber. 1) Diated + Floor Live (balanced): Lumber Increase=1.00. Plate Increase=1.00 Continue on page 2 	1-10: 2x4 BOT CHORD 2x4 SP I	4 SP M 31(flat) No.2(flat) *Except*		exc BOT CHORD Rig	cept end verticals. aid ceiling directly applied or	10-0-0 oc bracing. Except:				
VIEDS ZAK SPY NO.S(IIII) REACTIONSS All bearings 1-4-0 except (Bielength) 13-0-8-0, 22-0-7-4, 17=0-3-8. (b) Max Uplit 100 b or less at joint(s) 17 Max Grav All reactions 250 ib or less at joint(s) 17 except 13=692(LC 11), 15=1431(LC 4), 15=1000(LC 1), 16=3190(L 3), 22-319(L 3) FORCES. (b) Max Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3a-3180(L 3), 24-3182(L 3), 5-6-22130(L 5-7-02076, 7-8-02078, 8-14-5200 WEBS 8-158-14040, 7-168-6800, 5-18-10640, 2-22-25270, 2-20=097, 3-20=6540, 4-20-002, 8-16-102182, 8-16-142300 No 6-8182 10 Uhalance floor live loads have been considered for this design. 2) Arguested, plates have not been designed to provide for plate capable of withstanding 100 lb uplift at joint(s) 17. 3) All plates are 3x6 MT20 Unless of threation about its center. 2) Four intace of top	13-21: 2	x4 SP M 31(flat)		6-0	-0 oc bracing: 15-16,14-15					
REACTIONS. All bearings 14-0 except ((length) 13-0-8-0, 22-0-74, 17-0-3-8. (lb) - Max Upit T 40 lb to tess at joint(s) 17 Max Grav All reactions 250 lb or less at joint(s) 17 except 13=692(LC 11), 15=1431(LC 4), 15=1000(LC 1), 16=3198(LC 3), 22=131(LC 3) FORCES. (lb) - Max. Comp.Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3-3-31880, 3-431820, 4-528130, 6-7=0/2076, 7-8=0/2076, 8-3-5720, 9-116560 BOT CHORD 20-22=0/2261, 19-20=0/281, 18-19=0/2813, 17-18=0/993, 16-17=0/993, 15-16=-1327/0, 14-15s-12910, 13-14=0/975 WEBS 8-15=-14040, 7-16=-6860, 5-18=-10240, 2-22=-5270, 2-20=0/097, 3-20=-6540, 4-20=0602, 6-16=-32880, 6-18=0/2188, 11-13=-1077/0, 11-14=-581/0, 9-14=-527/0, 8-14=0-11828, 8-16=-14230 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 30K MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide meass otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide meas offer all on alis into Grider & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(se) to front face of top chord. 5) Fill all nail holes where hanger is in contact with humber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LCAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber increase=1.00, Plate Increase=1.00 Continued on page 2 MeXMMO . Verty design parameters and F50 MICLUED MITEX REFERENCE FAGE MIX773 ve.1032035 EEFOCE USC. Parity and the origin parameters and endprophy incorporate this design in the origin to be overall building design parameters and endprophy incorporate tha dage in the origin to be overall	WEBS 2X4 SP1	NO.3(IIAL)								
Max Grav Altreactions 250 lb or less at joint(s) 17 except 13=692(LC 11), 15=1431(LC 4), 15=1000(LC 1), 16=3198(LC 3), 22=1331(LC 3) FORCES. (b) - Max. Comp.Max. Tan All forces 250 (b) or less except when shown. TOP CHORD 2-3-31880, 3-4-31820, 4-528130, 6-7=0/2076, 7-8=0/2076, 9-6-5720, 21-5650 BOT CHORD 2-22=-0/2286, 19-20-0/2813, 18-19=0/2813, 17-18=0/993, 16-17=0/993, 15-16=-1327/0, 14-15=-1291/0, 13-14=-0975 WEBS 6-15=-1440(0, 7-16=-6600, 5-18=-1064/0, 2-22=-2527/0, 2-20=0'997, 3-20=-654.00, 4-20=0002, 6-16=-32800, 6-18=0/2188, 11-13=-1077/0, 11-14=-561/0, 9-14=-527/0, 0-14=01828, b-16=-142910 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 30K 0fT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide meass otherwise indicated. 4) Plates therefuncial connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131*X 3') nails. 5) CAUTION, Do not erect truss backwards. 1) Use USP MKH22 (With Ioh alis into Grider & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(se) to front lace of top chord. 5) Fill all nail holes where Angener is in contact with lumber. 1) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Mixel With Mixel Part Mixel Most Context with lumber . Design Mixel Regress means and EAD MIXEL DESCOMPTEMENT MIXELEPERCE PAGE MIXER MIXEL MIXEL REGRESS BEFORE USE. Design Mixel Regress pade MIXEL MIXEL REGRESS MIXEL PAD	(Ib) - Max Up	rings 1-4-0 except (jt=lengt lift All uplift 100 lb or less a	n) 13=0-8-0, 22=0-7-4, 17=0-3-8. it joint(s) 17							
FORCES. (b) - Max. Comp./Max. Ten All forces (250) (b) or less except when shown. TOP CHORD 2-33180, 3431820, 45528130, 6528130, 67-80/2076, 7-8-0/2076, 8-9-6720, 9-115650 BOT CHORD 20-22-0/22813, 18-19-0/2813, 18-19-0/2813, 17-18-0/993, 16-17-0/993, 15-16-13270, 14-15-12910, 13-14-0/975 BOT CHORD 20-22-0/228, 19-20-0/20213, 18-19-0/2813, 17-18-0/993, 16-17-0/993, 15-16-13270, 4-20-0/602, 6-16-32880, 6-18-0/2188, 11-13-1077/0, 11-14-581/0, 9-14-527/0, 8-14-0/1828, 8-16-1429/0 WEBS A 5-15-41/dv(A), 7-166860, 5-18-10640, 2-22-25270, 2-20-0/997, 3-20-664/0, 4-20-0/602, 6-16-3288/0, 6-18-0/2188, 11-13-1077/0, 11-14-581/0, 9-14-527/0, 8-14-0/1828, 8-16-1429/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 3x6 MT20 unless otherwise indicated. 9) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 co and fastened to each truss with 3-10d (0.131* X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 1) Cultured not face of top chord. 1) Bil all all holes where hanger is in contact with lumber. 10) Los ASE(S) Standad 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Partice Advection State and the about the center state and the state built ampact. Lamber 1.0. Plate Increase=1.00. Partice Advection State and the about the degrin based on two programmetre backwards. Description of use only with Methe Order and FLD MOTES METHOLE MUTE REFERENCE FAGE MINT73 vn (1032018 BEFDE	Max Gra	All reactions 250 lb or l	ess at joint(s) 17 except 13=692(LC	11), 15=1431(LC 4), 15=1000	0(LC 1),					
FORCES. (b) - Max. Comp.Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3-3-8180, 3-45-3120, 4-5-28130, 5-6-28130, 5-7-8-0/2076, 7-8-0/2010, 7-16-6808, 5-18-0/2813, 17-18-0/993, 16-17-0/993, 15-16-1327/0, 7-16-5808, 0, 5-181640, 2-22-2527/0, 2-20-0/997, 3-20-654/0, 4-20-0/602, 6-163288/0, 6-18-0/2188, 11-131077/0, 11-14=-581/0, 9-14527/0, 8-14-9/192, 8-161429/0 NOTES- 1) Uholanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fatoricator to increase plate sizes to account for these factors. 3) All plates are 3x6 MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 cand fastened to each truss with 3-10d (0.131* X 3°) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUITON, Do not erect truss backwards. 9) Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(se) to fron face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Continued on page 2 WERWNO- Worky design parameters and PEAD MOTES MOTING ADM PEAD PEAPER EVECE PAGE MMF473 wr.10032015 BEFEME USE. Design values, Beare indi		16=3198(LC 3), 22=133	(LU 3)							
B-9=572(0, 9-11=-565/0 BOT CHORD 20:22=022868, 19:20=0/2813, 17-18=0/993, 16-17=0/993, 15-16=-1327(0, 14-15=-1321/0, 14-1	FORCES. (lb) - Max. C	comp./Max. Ten All forces	250 (lb) or less except when shown	=0/2076						
BOILCHORD 20-22-01/2260, 19-20-01/2813, 18-19-01/2813, 11-18-19-01/2813, 15-17-01/983, 15-15-13/27/0, 14-158-1219(0, 13-14-0975 WEBS 8-155-1404/0, 7-165-686/0, 5-18=-1064/0, 2-22=-2527/0, 2-20=0/997, 3-20=-654/0, 4-20=-0602, 6-165-2288/0, 6-18=-0/288, 0, 6-18=-0/2488, 11-13=-1077/0, 11-14=-581/0, 9-14=-527/0, 8-14=-0/1828, 8-16=-1429/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 3X6 MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilit at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131* X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect ruuss backwards. 8) Use USP MSH422 (With 10d nails into Grider & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Plate Increase = 1.00, Plate Increase=1.00, Plate Increase=1.00 WERWING - Verify design parameters and READ NOTES ON THIS AND NCLUDED MITER REFERENCE PAGE MI-773 vvv. 1002/2015 BEFORE USE. Design valid to use only with NetedPononcents. This design insed only uon parameters and projent in individual building component, not at use system. Before use, the building designer must very the applicability of design parameters and projent individual building component match	8-9=-5	72/0, 9-11=-565/0		00 45 40 4007/0						
WEBS 8-151404/0,7-15686/0,5-181064/0,2-222527/0,2-20-0/997,3-20654/0, 4-20=0/600, 6-16=-3288/0, 6-18=-/1288/0, 6-18=0/2188, 11-13=-1077/0, 11-14=-581/0, 9-14=-527/0, 8-14=0/1828, 8-16=-1429/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 3x6 MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-00 c and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Use USP NBH422 (With 10d nails into Grider & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 MTRNMO- Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MI-P473 rev. 10/02/015 BEFORE USE. Design valid, resign is based only upon parameters show, and is for an individual building component, nd at uss system. Before use, the building designer must wriff the applicability of design parameters and properly indoc read my with TRE® connectors. This design is based only upon parameters and properly individual building component, bris design into the overall building design. Beaching individual truss weys and chard or thord members only. Additional temporara	BOT CHORD 20-22= 14-15=	=0/2286, 19-20=0/2813, 18- =-1291/0, 13-14=0/975	19=0/2813, 17-18=0/993, 16-17=0/9	93, 15-16=-1327/0,						
 B-14=0/1628, 8-16=-1429/0 NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 3x6 MT20 unless otherwise indicated. 9) Plates checked for a plus or minus 0 degree rotation about its center. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-00 c and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 1) CAUTION, Do not erect truss backwards. 10) un the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). DIAD CASE(S) Standard 10 Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increa	WEBS 8-15=- 4-20=0	1404/0, 7-16=-686/0, 5-18= 0/602_6-16=-3288/0_6-18=0	-1064/0, 2-22=-2527/0, 2-20=0/997,	3-20=-654/0, 0_9-14=-527/0		annuur.				
NOTES- 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 3x6 MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(se) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) Section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 20 20 20 20 20 20 20 20 20	8-14=0	/1828, 8-16=-1429/0	,2100, 11 10- 1011/0, 11 11- 001/0	0, 0 T I = 02770,		QUIN VEL				
 1) Unbalanced floor live loads have been considered for this design. 2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. 3) All plates are 3x6 MT20 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131* X 3') nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(se) to ford face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIN-473 rev. 1002015 BEFORE USE. Design value for use only who magneters shown, and is for an individual building component, not at trus system. Before use, the building designer must verify the applicability of design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIN-473 rev. 1002015 BEFORE USE. Design value for use only web and or chord members only and permanent braining 	NOTES-					CENS				
 In sequence of the sponsibility of the fabricator to increase plate sizes to account for these factors. All plates are 3x6 MT20 unless otherwise indicated. Plates checked for a plus or minus 0 degree rotation about its center. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upliff at joint(s) 17. Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. Fill all nail holes where hanger is in contact with lumber. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIN-773 rev. 10/02/2015 BEFORE USE. Design valid for use only with MITeR® connectors. This design is based only upon parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design in the overall building designer must verify the	 Unbalanced floor live As requested plates live 	loads have been considered	d for this design. provide for placement tolerances or r	rough handling and erection c	conditions It is					
 3) All plates are 3x6 M120 unless otherwise indicated. 4) Plates checked for a plus or minus 0 degree rotation about its center. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00, Plate Increase=1.00 April 17,2019 Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIN-7473 rev. 10032015 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into there or the oreal building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building demonstry and parameters and property incorporate the design into the overall building designer must verify the applic	the responsibility of th	e fabricator to increase plat	e sizes to account for these factors.			No 68182				
 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Continued on page 2 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss weand/or chord members only. Additional temporary and premament bracing	4) Plates checked for a p	20 unless otherwise indicate	d. ion about its center.							
 Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. Fill all nail holes where hanger is in contact with lumber. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Mirek USA. Inc. FL Cert 6634 More and the design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters and property incorporate this design in the twee and/or chord members only. Additional temporary and permanent bracing 	5) Provide mechanical c	onnection (by others) of trus	s to bearing plate capable of withstant t 10-0-0, oc and fastened to each true	anding 100 lb uplift at joint(s) uss with 3-10d (0 131" X 3") r	17. nails	PP. STAR OF				
 7) CAUTION, Do not erect truss backwards. 8) Use USP MSH422 (With 10d nails into Gre & 6-10d nails into Truss) or equivalent at 13-10-0 from the left end to connect truss(es) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Marking - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MTRek® connectors. This design is based only upon parameters shown, and is for an individual luiding component, not a trust welding designs the application by of design parameters shown, and is for an individual functional temporary and permanent bracing 	Strongbacks to be atta	ached to walls at their outer	ends or restrained by other means.							
truss(es) to front face of top chord. 9) Fill all nail holes where hanger is in contact with lumber. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design parameters and not chord members only. Additional temporary and permanent bracing	7) CAUTION, Do not ere8) Use USP MSH422 (W	ect truss backwards. /ith 10d nails into Girder & 6	-10d nails into Truss) or equivalent a	at 13-10-0 from the left end to	connect	ORID GL				
 (a) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard (b) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 (b) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/032015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design must verify the applicability of design parameters and not or chord members only. Additional temporary and permanent bracing 	truss(es) to front face	of top chord.	Imper			ONALE				
LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Continued on page 2	10) In the LOAD CASE(S) section, loads applied to	the face of the truss are noted as fro	ont (F) or back (B).						
1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Continued on page 2 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and/or chord members only. Additional temporary and permanent bracing MITEK®	LOAD CASE(S) Standa	OAD CASE(S) Standard MiTek USA, Inc. FL Cert 6634								
Continued on page 2 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not at runss system. Before use, the building designer must verify the applicability of design parameters only characters and/or chord members only. Additional temporary and permanent bracing	1) Dead + Floor Live (ba) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 6904 Parke East Blvd. Tampa FL 33610 Date:								
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing MITEK®						April 17,2019				
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and vor chord members only. Additional temporary and permanent bracing	Continued on page 2									
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	WARNING - Verify des	ign parameters and READ NOTES	ON THIS AND INCLUDED MITEK REFERENC	CE PAGE MII-7473 rev. 10/03/2015 BE s for an individual building componen	EFORE USE.					
	a truss system. Before use building design. Bracing ir	e, the building designer must verify indicated is to prevent buckling of in	he applicability of design parameters and prop dividual truss web and/or chord members only	perly incorporate this design into the o	overall nt bracing					

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					T16	6796566
413220	F20	Floor Girder	1	1		
					Job Reference (optional)	
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	: 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:51 2019 Pa	ige 2

ID:LTHF4EcV9tayzxn_hS4OfoznULZ-3EaBVC0BjcV?u_rGbgX_Ba1vGpsb6uZMFR1W3_zQ8kc

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 13-22=-10, 1-12=-226 Concentrated Loads (lb) Vert: 8=-1080(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

H	6-9-7							6-0 8-9	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8	Edge], [4:0-1-8,Edge], [7	:0-1-8,Edge], [8:0-	1-8,Edge],	[10:0-1-8,0-	-1-0]			
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.90 BC 0.54 WB 0.37 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.04 8 -0.07 8 0.01	c) l/defl -9 >999 -9 >999 5 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 5%F, 0%E	
LUMBER- BRACING- TOP CHORD 2x4 SP No.2(flat) TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD 2x4 SP No.2(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.									
REACTIONS. (Ib/size) 9=844/Mechanical, 5=810/1-0-0 (min. 0-1-8), 6=42/0-3-8 (min. 0-1-8) Max Uplift6=-25(LC 7) Max Grav 9=844(LC 1), 5=810(LC 1), 6=111(LC 8)									
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 8-9=0 WEBS 2-9=-	Comp./Max. Ten All forces 250 (lb) o 1238/0)/1238, 7-8=0/1238, 6-7=0/1238, 5-6=0 1368/0, 3-5=-1375/0	r less except when showr 1238	۱.						
 WEBS 2-9=-1368/0, 3-5=-1375/0 NOTES- Unbalanced floor live loads have been considered for this design. As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors. Plates checked for a plus or minus 0 degree rotation about its center. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 6. Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard									

6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

MiTek 6904 Parke East Blvd. Tampa, FL 36610

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	[5:Edge,0-1-8], [7:0-1-8,Edge], [9:0-1-8,	0-1-0]		
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. TC 0.26 BC 0.31 WB 0.36 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 6-7 >999 480 Vert(CT) -0.01 6-7 >999 360 Horz(CT) 0.01 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 32 lb FT = 5%F. 0%E
	0000 1 2020 11,11 2011			
LUMBER- TOP CHORD 2x4 3 BOT CHORD 2x4 3	SP No.2(flat) SP No.2(flat)		BRACING- TOP CHORD Structural wood sheathing direct except end verticals.	ctly applied or 4-1-8 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 8=1306/Mechanical, 5=1309/0-7-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-953/0

2x4 SP No.3(flat)

BOT CHORD 7-8=0/953, 6-7=0/895, 5-6=0/895

WEBS 2-8=-1570/0, 3-5=-1548/0

NOTES-

WEBS

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

2) Plates checked for a plus or minus 0 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Load case(s) 1, 2 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

7) Use USP MSH422 (With 10d nails into Girder & 6-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-10-0 from the left end to 2-10-0 to connect truss(es) to back face of top chord.

8) Fill all nail holes where hanger is in contact with lumber.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 5-8=-10, 1-4=-341(F=-115) Concentrated Loads (lb) Vert: 2=-655(B) 3=-622(B)

2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-8=-10, 1-4=-341(F=-115) Concentrated Loads (lb) Vert: 2=-655(B) 3=-622(B)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-0-4		7-0-4	0-0-4	11-3-4		
l.	6-8-4			1-0-0	1-0-0	2-7-0	1
Plate Offsets (X,Y)	[2:0-3-8,Edge], [4:0-3-0,Edge], [5:0-1-8,E	dge], [8:0-1-8,0-0-0], [9:0-1-	8,Edge], [12:0-1-8,0	-1-0], [14:0-1	-8,0-1-0]		
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.87 BC 0.60 WB 0.73 Matrix-S	DEFL. i Vert(LL) -0.04 Vert(CT) -0.23 Horz(CT) 0.03	n (loc) 1/0 3 9-10 >9 3 9-10 >5 3 7	defl L/d 999 480 563 360 n/a n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	BRACING- TOP CHORD BOT CHORD	Structural v except end Rigid ceiling	vood sheathing direc verticals. g directly applied or	tly applied or 2-2-0 (oc purlins,		

704

0 0 4

REACTIONS. (lb/size) 11=1286/0-7-4, 7=1286/0-7-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3167/0, 3-4=-3167/0, 4-5=-2506/0

BOT CHORD 10-11=0/2282, 9-10=0/2506, 8-9=0/2506, 7-8=0/2506

WEBS 2-11=-2500/0, 2-10=0/969, 3-10=-845/0, 4-10=0/953, 5-7=-2792/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

c o 4

11 2 1

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-3-0	12-11-8				21-0-0				
Plate Offsets (X,Y)	[2:0-3-0,Edge], [3:0-1-8,Edge], [6:0-1-8,E [18:0-1-8,Edge], [19:0-5-0,Edge], [20:0-1	dge], [7:0-1-8,0-0-0], [8:0-3-0,Edge ·8,Edge], [21:0-1-8,Edge], [23:0-3-{	, [12:0-1-8,Edge ,Edge], [24:0-1-8	9], [13:0-1-8,Ed 8,Edge]	8-0 lge], [15:0-1-8,E	dge], [17:0-1-8,Edge]],		
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. DEl TC 0.75 Ver BC 0.73 Ver WB 0.94 Hor Matrix-S Hor Matrix-S	`L. in ((LL) -0.11 21 :(CT) -0.30 2' z(CT) 0.04	(loc) l/defl 1-23 >999 1-23 >505 16 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 108 lb	GRIP 244/190 187/143 FT = 5%F, 0%E		
LUMBER- BRACING- TOP CHORD 2x4 SP No.2(flat) *Except* TOP CHORD 1-10: 2x4 SP M 31(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP M 31(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (lb/size) 25=1499/0-5-8, 16=844/0-8-0, 19=2595/0-8-0 Max Grav 25=1507(LC 3), 16=878(LC 7), 19=2595(LC 1) BOT CHORD									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-25=-1499/0, 2-3=-1519/0, 3-5=-3301/0, 5-6=-3301/0, 6-7=-3501/0, 7-8=-3501/0, 8-9=0/656, 9-11=0/649, 11-12=-1288/0, 12-13=-1288/0, 13-14=-1288/0 BOT CHORD 23-24=0/1519, 21-23=0/3501, 20-21=0/3501, 19-20=0/2223, 18-19=0/938, 17-18=0/1288, 16-17=0/1132 WEBS 3-24=-1254/0, 2-24=0/1977, 9-19=-642/0, 3-23=0/1944, 5-23=-584/0, 8-19=-2921/0, 6-23=-394/0, 8-20=0/1568, 7-20=-662/0, 11-19=-1530/0, 14-16=-1312/0, 11-18=0/765, 14-17=0/276, 12-18=-543/0									
NOTES-	e loads have been considered for this des	ian				min			

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are MT20 plates unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
					T16796573	
413220	F27	Floor Supported Gable	1	1		
					Job Reference (optional)	
TIBBETTS LUMBER CO LLC, LUTZ, FL 8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:55 2019 Page 1						

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:55 2019 Page 1 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-x?piLa3hnq?QNb91qWcwLQCngQQY2uayA3?kClzQ8kY

Scale = 1:35.3

			21-1-12			
Plate Offsets (X,Y)	[37:Edge,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode FBC2017/TPI2014	CSI. TC 0.17 BC 0.03 WB 0.10 Matrix-R	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) l/defl L/d a - n/a 999 a - n/a 999 0 20 n/a n/a	PLATES MT20 Weight: 121 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.2(flat) P No.2(flat)		BRACING- TOP CHORD	Structural wood sheathing direct except end verticals.	ctly applied or 6-0-0 oc	purlins,

21-1-12

LOWIDER		DICAOINO	
TOP CHORD	2x4 SP No.2(flat)	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.2(flat)		

REACTIONS. All bearings 21-1-12.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 20 except 37=293(LC 1), 36=748(LC 1), 35=744(LC 1), 33=741(LC 1), 35=744(LC 1), 35=74 1), 32=741(LC 1), 31=741(LC 1), 30=741(LC 1), 29=741(LC 1), 28=741(LC 1), 27=741(LC 1), 26=741(LC 1), 25=741(LC 1), 24=742(LC 1), 23=737(LC 1), 22=759(LC 1), 21=677(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-37=-287/0 WEBS

- 2-36=-735/0, 3-35=-730/0, 4-33=-727/0, 5-32=-728/0, 6-31=-728/0, 8-30=-728/0, 9-29=-728/0, 10-28=-728/0, 11-27=-728/0, 12-26=-728/0, 13-25=-728/0, 14-24=-729/0,
 - 15-23=-724/0, 17-22=-745/0, 18-21=-669/0

NOTES-

- 1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 20-37=-10, 1-19=-546

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Invozoris beroke use. Design valif for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
					T16796574
413220	F28	Floor Supported Gable	4	1	
					Job Reference (optional)

0-1-8

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:56 2019 Page 1 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-PBN4Yw4KY87H_lkDOD79udlw?qmNnK?5PjlHlBzQ8kX

Scale = 1.21.9

		1	3-3-4		l.
Plate Offsets (X,Y)	[23:0-1-8,0-1-0]				
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNO	CSI. TC 0.26 BC 0.06 WB 0.15	DEFL. i Vert(LL) n/i Vert(CT) n/i Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 0 12 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code FBC2017/TPI2014	Matrix-R			Weight: 76 lb FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4	SP No.2(flat) SP No.2(flat) SP No.2(flat)		BRACING- TOP CHORD	Structural wood sheathing dire except end verticals.	ectly applied or 6-0-0 oc purlins,
VVEB5 2X4	SP NO.3(IIAL)		BUICHORD	Rigid celling directly applied of	TU-U-U OC bracing.

13-3-4

WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.2(flat)

REACTIONS. All bearings 13-3-4.

(lb) - Max Grav All reactions 250 lb or less at joint(s) except 22=414(LC 1), 12=415(LC 1), 21=1130(LC 1), 20=1150(LC 1), 19=1139(LC 1), 18=1142(LC 1), 17=1141(LC 1), 16=1142(LC 1), 15=1139(LC 1), 14=1151(LC 1), 13=1129(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-22=-402/0, 11-12=-411/0 WEBS
 - 2-21=-1126/0, 3-20=-1135/0, 4-19=-1126/0, 5-18=-1128/0, 6-17=-1128/0, 7-16=-1129/0,
 - 8-15=-1126/0, 9-14=-1138/0, 10-13=-1114/0

NOTES-

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

- the responsibility of the fabricator to increase plate sizes to account for these factors.
- 2) All plates are 2x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 0 degree rotation about its center.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf)
 - Vert: 12-22=-10, 1-11=-846

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	5-9-10	6-9-10	7-9-10	13-1	1-4
	5-9-10	1-0-0	1-0-0	6-1-	10
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [8:0-1-8,E	dge], [9:Edge,0-1-8], [11:0	0-1-8,Edge], [12:0-	1-8,Edge], [14:Edge,0-1-8], [15:0-1-8,	0-1-0], [17:0-1-8,0-1-0]
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.95 BC 0.64 WB 0.87 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.10 10-11 >999 480 -0.28 11 >590 360 0.05 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 71 lb FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.2(flat) P M 31(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or 1	ly applied or 2-2-0 oc purlins, 0-0-0 oc bracing.

REACTIONS. (lb/size) 14=1600/0-7-4, 9=1600/0-8-0

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-4049/0, 3-4=-4049/0, 4-5=-4420/0, 5-6=-4061/0, 6-7=-4061/0
- BOT CHORD 13-14=0/2850, 12-13=0/4420, 11-12=0/4420, 10-11=0/4420, 9-10=0/2850

WEBS 2-14=-3151/0, 2-13=0/1390, 3-13=-269/0, 4-13=-841/0, 7-9=-3151/0, 7-10=0/1404, 6-10=-346/0, 5-10=-722/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

PD. STATE OF WORLD AGE DE NO 69199

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	13-8-12							
	13-8-12							
Plate Offs	ets (X,Y)	[2:0-2-12,Edge], [4:0-1-8,Edge], [5:0-1-8,	Edge], [8:0-1-8,Edge], [9:E	dge,0-1-8], [11:0-1-8	0-0-0], [12:0-1-8,Edge], [14:Edge	e,0-1-8], [15:0-1-8,0-	1-0]	
LOADING TCLL TCDL BCLL BCDL	(psf) 40.0 73.0 0.0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeFBC2017/TPI2014	CSI. TC 0.94 BC 0.60 WB 0.87 Matrix-S	DEFL. Vert(LL) -0.0 Vert(CT) -0.2 Horz(CT) 0.0	in (loc) l/defl L/d 9 10-11 >999 480 5 11-12 >635 360 5 9 n/a n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 5%F, 0%E	
LUMBER- TOP CHORD 2x4 SP No.2(flat) BRACING- TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP M 31(flat) TOP CHORD 2x4 SP M 31(flat) WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracir						ctly applied or 2-2-0 10-0-0 oc bracing.	oc purlins,	

.....

REACTIONS. (lb/size) 14=1576/0-7-4, 9=1548/0-5-8

FORCES. (lb) - Max, Comp./Max, Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-3958/0, 3-4=-3958/0, 4-5=-4284/0, 5-6=-4010/0, 6-7=-4010/0
- BOT CHORD 13-14=0/2798, 12-13=0/4284, 11-12=0/4284, 10-11=0/4284, 9-10=0/2895
- WEBS 2-14=-3093/0, 7-9=-3147/0, 2-13=0/1344, 3-13=-280/0, 7-10=0/1293, 6-10=-296/0, 4-13=-767/0, 5-10=-693/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

AQUIN No 68 BD. STATE No 68 STATE SONAL Joaquin Velez PE No.6818; MITek USA, Inc. PL 5 JOAQUIN VE 68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
413220	F31	Floor	6	1	T167965	577
TIBBETTS LUMBER CO LL	C, LUTZ, FL		8	.240 s Deo	Job Reference (optional) c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:11:58 2019 Page 1	
0.1.8		ID:L1	HF4EcV9ta	ayzxn_hS4	OfoznULZ-MaVrzc5a4IN?E3tcWe9dz2qBpdIvF2zOs1EOp4zQ8kV	
H <u>2-6-0</u>	<mark>9-9-4</mark> ⊢	<u>2-0-0</u>	2-0-0		0-178 Scale = 1:	53.6
		3x6 FP = 3	6x12 x6 FP =	=		
2x4 = 6x8 = 1 2	3 4 5	6x8 = 8x12 = 6 7.8 = 9.31 = 10	11 12		5x6 6x8 = 2x4 = 13 14 15 16 17	
						1-8-0
						1
28 4×6 —	27 26 3x8 - 5x5	25 24 23 22 21 - 2x4 II 3x6 EP 4x5 - 7x8 -	_	1	20 19 18 v8 - 3v8 - 4v8 -	
4x0 —	3x0 — 5x5	= 2x4 = 3x6 = 4x3 = 7x6 = 5x12 = 5x1	_	4	xo —	
	9	-9-4				
	8-7-12 8-974 8-7-12 0-1-8	10-9-4 15-10-4 1-0-0 5-1-0			<u>32-1-0</u> 16-2-12	
Plate Offsets (X,Y) [2:0	<u>1</u>)-3-12,Edge], [6:0-1-8,Edge],	-0-0 [9:0-5-12,Edge], [16:0-3-12,Edge], [18:Edge,0-	1-8], [20:0-	-3-12,Edg	e], [21:0-3-4,Edge], [24:0-5-4,Edge], [25:0-1-8,0-0-0],	
[26	:0-1-8,Edge], [29:0-1-8,0-1-0]	, [30:0-1-8,0-1-0]				
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL.	ir	(loc)	I/defl L/d PLATES GRIP	
TCDL 73.0	Lumber DOL 1.00	D IC 0.63 Ven(L) D BC 0.63 Ven(C)	L) -0.11 T) -0.32	26-27	>599 480 M120 244/190 >586 360	
BCLL 0.0 BCDI 5.0	Rep Stress Incr YES Code FBC2017/TPI2014	S WB 0.95 Horz(C Matrix-S	CT) 0.06	18	n/a n/a Weight: 224 lb FT = 5%F 0%F	F
					Weight. 224 10 11 - 0701, 0701	
TOP CHORD 2x4 SP M	31(flat) *Except*	TOP CI	NG- HORD	Structura	al wood sheathing directly applied or 6-0-0 oc purlins,	
11-17,8-17 BOT CHORD 2x4 SP M	2x4 SP No.2(flat)	BOT CI		except e	nd verticals.	
WEBS 2x4 SP No	.3(flat) *Except*		IOND	Nigiu cei	ing directly applied of 0-0-0 oc bracing.	
12-20,9-21	: 2x4 SP No.2(flat)					
REACTIONS. (Ib/size) Max Grav	28=1500/0-3-8, 22=4432/0-5 28=1572(LC 3), 22=4432(LC	5-8, 18=1552/0-3-8 5 1), 18=1595(LC 4)				
FORCES. (Ib) - Max. Col TOP CHORD 2-3=-349 9-10=0/1	np./Max. Ten All forces 250 18/0, 3-4=-3498/0, 4-5=-2805/ 879, 10-12=0/1886, 12-13=-2	0 (lb) or less except when shown. 0, 5-6=-2805/0, 6-7=-42/1080, 7-9=-32/1082, 2813/0, 13-14=-2813/0, 14-15=-3572/0,				
15-16=-3 BOT CHORD 27-28=0	572/0 2334, 26-27=0/3544, 25-26=	0/2805. 24-25=0/2805. 22-24=-3342/0.				
21-22=-3	591/0, 20-21=-79/815, 19-20	=0/3692, 18-19=0/2376				
6-24=-33	977/0, 7-24=-288/45, 9-24=0/3	3239, 16-18=-2716/0, 16-19=0/1381, 15-19=-5	', 65/0,			
14-20=-	1102/0, 13-20=-576/0, 12-20=	=0/2380, 12-21=-2931/0, 9-21=0/2573			ANNO LUN KA	
NOTES-					N'IOA	
 2) As requested, plates ha 	ads have been considered for ve not been designed to prov	this design. ide for placement tolerances or rough handling	and erecti	on condit	ions. It is	1
the responsibility of the 3) All plates are 3x6 MT20	fabricator to increase plate size unless otherwise indicated	zes to account for these factors.			💈 🤃 No 68182 🐪	1
4) Plates checked for a plu	is or minus 0 degree rotation	about its center.		e	E*E 17 1	*
 Recommend 2x6 strong Strongbacks to be attact 	backs, on edge, spaced at 10 hed to walls at their outer end	0-0 oc and fastened to each truss with 3-10c ls or restrained by other means.	l (0.131" X	3") nails.		œ.
6) CAUTION, Do not erect	truss backwards.				THE STATE OF	ΨΞ
						1
					III SS THENG	
					UNAL LINE	
					Joaquin Velez PE No.68182	
					6904 Parke East Blvd. Tampa FL 3361	0
					Date: April 17,2019	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0 ₁ 3-ρ	8-6-8	8-8 ₁ 0 9-8-0 10-8-0	18-9-12	
0-3-0	8-3-8	0-1-8 1-0-0 1-0-0	8-1-12	
Plate Offsets (X,Y)	[2:0-3-0,Edge], [3:0-1-8,Edge], [7:0-1-8,Edge],	[8:0-1-8,Edge], [12:0-1-8,Edge], [13	3:Edge,0-1-8], [15:0-1-8,Edge], [16:0-1-8,Edge], [18:0-1-8,Edge],	
	[20:0-1-8,0-1-0]			

LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.72 BC 0.77 WB 0.86 Matrix-S	DEFL. 0.1 Vert(LL) -0.1 Vert(CT) -0.4 Horz(CT) 0.0	in (loc) l/defl L/d 9 16-17 >999 480 8 16-17 >459 360 9 13 n/a n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 S 1-4: 2 BOT CHORD 2x4 S WEBS 2x4 S 2-18,	P M 31(flat) *Except* x4 SP No.2(flat) P M 31(flat) P No.3(flat) *Except* 8-17: 2x4 SP No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 5-8-9 o 10-0-0 oc bracing.	c purlins,

REACTIONS. (lb/size) 19=2239/0-6-0, 13=2154/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-19=-2233/0, 2-3=-1807/0, 3-5=-4466/0, 5-6=-4466/0, 6-7=-6403/0, 7-8=-6403/0,

8-9=-6403/0, 9-10=-5258/0, 10-11=-5233/0

 BOT CHORD
 17-18=0/1807, 16-17=0/5969, 15-16=0/6403, 14-15=0/6066, 13-14=0/3246

 WEBS
 3-18=-1926/0, 2-18=0/2655, 7-16=-480/0, 8-15=-637/0, 3-17=0/3052, 5-17=-553/0, 6-17=-1754/0, 6-16=0/856, 11-13=-3754/0, 11-14=0/2339, 10-14=-501/0, 9-14=-1071/0, 9-15=0/897

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-q-4	8-7-12	8-9 ₁ 4	9-9-4 10-9-4	18-11	-0	
0-0-4	8-7-8	0-1-8	1-0-0 1-0-0	8-1-1	2	
Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,0-0-0], [10:0-1-8,	Edge], [11:Edge,0-1-8], [1	3:0-1-8,Edge], [14:0-1	-8,Edge], [16:Edge,0-1-8], [17:0-1	-8,0-1-0], [18:0-1-8,0-1	1-0]
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.79 BC 0.84 WB 0.58 Matrix-S	DEFL. Vert(LL) -0.1 Vert(CT) -0.4 Horz(CT) 0.1	in (loc) l/defl L/d 7 14-15 >999 480 8 14-15 >471 360 1 11 n/a n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P M 31(flat) P M 31(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or	tly applied or 5-2-3 oc 10-0-0 oc bracing.	purlins,

REACTIONS. (lb/size) 16=2189/0-7-0, 11=2189/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-5386/0, 3-4=-5410/0, 4-5=-6601/0, 5-6=-6601/0, 6-7=-6601/0, 7-8=-5385/0, 8-9=-5359/0

BOT CHORD 15-16=0/3303, 14-15=0/6509, 13-14=0/6601, 12-13=0/6357, 11-12=0/3303

5-14=-448/44, 6-13=-733/0, 2-16=-3820/0, 2-15=0/2448, 3-15=-579/0, 4-15=-1278/0, 4-14=-126/576, 9-11=-3820/0, 9-12=0/2418, 8-12=-531/0, 7-12=-1227/0, 7-13=0/928

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

De state Borsson ORIS Joaquin Velez PE No.6818 MITek IISA ter E JOAQUIN VE ENS 68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4-5-	12 4-7 ₁ 4	13-0-12	14-0-12	15-0-12		23-2-8	
4-5- Plate Offsets (X,Y)	12 0-1-8 [3:0-3-0,Edge], [7:0-1-8,Edge], [8:0-1-8,0 [22:Edge,0-1-8], [23:0-1-8,0-1-0], [24:0-1	8-5-8 -0-0], [12:0-3-12,Edge], [1: -8,0-1-0]	3:0-1-8,Edge], [14:Edg	<u>1-0-0</u> e,0-1-8], [15:0-3-	0,Edge], [16:0-1-	8-1-12 -8,Edge], [17:0-1-8,E	dge],
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.68 BC 0.84 WB 0.93 Matrix-S	DEFL. ir Vert(LL) -0.16 Vert(CT) -0.43 Horz(CT) 0.05	n (loc) l/defl 5 15-16 >999 8 15-16 >515 5 14 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP 14-19: WEBS 2x4 SP 3-20: 2	P M 31(flat) No.2(flat) *Except* 2x4 SP M 31(flat) P No.3(flat) *Except* x4 SP No.2(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood except end verti Rigid ceiling dire 6-0-0 oc bracing	sheathing direct cals. ectly applied or 1 g: 21-22,20-21.	ly applied or 6-0-0 o 0-0-0 oc bracing, E	c purlins, xcept:
REACTIONS. (Ib/size Max U Max G	e) 22=-659/0-3-0, 14=1882/0-3-8, 21=4 plift 22=-824(LC 4) rav 14=1884(LC 4), 21=4167(LC 1)	167/0-7-0					
FORCES. (lb) - Max. TOP CHORD 2-3= 8-9=- 8-9=- BOT CHORD 21-22 15-16 3-21 WEBS 3-21 5-20= 9-15=	Comp./Max. Ten All forces 250 (lb) or I D/3374, 3-4=0/1660, 4-5=0/1675, 5-6=-32 4820/0, 9-11=-4405/0, 11-12=-4405/0 2=-1679/0, 20-21=-3374/0, 18-20=0/1037 5=0/4896, 14-15=0/2741 =-2602/0, 2-22=0/1954, 2-21=-2377/0, 7-1 =-3232/0, 4-20=-332/0, 3-20=0/2945, 12-1 =-645/0, 9-16=-378/161	ess except when shown. 11/0, 6-7=-3313/0, 7-8=-48 17-18=0/4820, 16-17=0/4 8=-1774/0, 6-18=-578/0, 8 4=-3189/0, 12-15=0/1929	320/0, 820, 5-18=0/2657, , 11-15=-519/0,			min	
NOTES- 1) Unbalanced floor live 2) As requested, plates the responsibility of 3) All plates are 2x4 M 4) Plates checked for a 5) Provide mechanical 6) Recommend 2x6 str Strongbacks to be a	e loads have been considered for this des s have not been designed to provide for p the fabricator to increase plate sizes to ac T20 unless otherwise indicated. a plus or minus 0 degree rotation about its connection (by others) of truss to bearing ongbacks, on edge, spaced at 10-0-0 oc ttached to walls at their outer ends or res	ign. acement tolerances or rou count for these factors. center. plate capable of withstand and fastened to each trus rained by other means.	igh handling and erect ding 824 lb uplift at join s with 3-10d (0.131" X	ion conditions. It t 22. 3") nails.	is	* No	68182

7) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

- BOT CHORD
 2x4 SP No.2(flat) *Except*

 15-20: 2x4 SP M 31(flat)

 WEBS
 2x4 SP No.3(flat) *Except*

 4-23,4-21: 2x4 SP No.2(flat)
- REACTIONS. (lb/size) 24=231/Mechanical, 15=1885/0-3-8, 22=4046/0-7-0 Max Uplift 24=-61(LC 4) Max Grav 24=443(LC 3), 15=1892(LC 4), 22=4046(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=0/1505, 3-4=0/1505, 4-5=0/1636, 5-6=0/1648, 6-7=-3354/0, 7-9=-3376/0, 9-10=-4865/0, 10-11=-4865/0, 11-12=-4430/0, 12-13=-4430/0

 BOT CHORD
 23-24=-398/316, 22-23=-3279/0, 21-22=-3334/0, 19-21=0/1114, 18-19=0/4865, 17-18=0/4865, 16-17=0/4933, 15-16=0/2754

WEBS 4-22=-4022/0, 2-24=-366/461, 2-23=-1352/0, 3-23=-553/0, 4-23=0/2436, 9-19=-1780/0, 7-19=-578/0, 6-19=0/2649, 6-21=-3239/0, 5-21=-287/0, 4-21=0/2919, 13-15=-3204/0, 13-16=0/1944, 12-16=-520/0, 11-16=-651/0, 11-17=-382/169

NOTES-

1) Unbalanced floor live loads have been considered for this design.

 As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 0 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 24.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

PD STORE OF HI NO 68182 DO RIDAGINI

Rigid ceiling directly applied or 6-0-0 oc bracing

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

				8-1-0			
Plate Offsets	(X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1-8,0	-0-0], [6:0-1-8,Edge], [8:0)-1-8,Edge], [9:0-1-8,Ed	dge], [11:0-1-8,0-1-0]		
LOADING (pr TCLL 40 TCDL 73 BCLL 0 BCDL 5	sf)).0 3.0).0 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.55 BC 0.37 WB 0.32 Matrix-S	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	in (loc) I/defl L/d 3 7-8 >999 480 4 7-8 >999 360 1 7 n/a n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SF 2x4 SF 2x4 SF	 No.2(flat) No.2(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 • 10-0-0 oc bracing.	oc purlins,

8-1-0

REACTIONS. (lb/size) 10=924/Mechanical, 7=910/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1129/0, 3-4=-1129/0, 4-5=-1129/0

BOT CHORD 9-10=0/981, 8-9=0/1129, 7-8=0/977

WEBS 2-10=-1213/0, 5-7=-1197/0, 2-9=0/469, 5-8=0/476, 3-9=-380/0, 4-8=-387/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L		3-11-4							8-1-0		
			3-11-4			1				4-1-12		1
Plate Offs	sets (X,Y)	[2:0-3-4,Edge], [4:0-3-0,E	dge], [6:Edge,	0-1-8], [8:Ed	ge,0-1-8], [9:0·	-1-8,0-1-0]						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.41	Vert(LL)	-0.01	7	>999	480	MT20	244/190
TCDL	73.0	Lumber DOL	1.00	BC	0.91	Vert(CT)	-0.08	6-7	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.89	Horz(CT)	0.03	6	n/a	n/a		
BCDL	5.0	Code FBC2017/T	PI2014	Matrix	(-P						Weight: 60 lb	FT = 5%F, 0%E
LUMBER TOP CHO	- DRD 2x4 S	SP No.2(flat)				BRACING- TOP CHOR	D :	Structur	al wood	sheathing dire	ectly applied or 6-0-0	oc purlins,
BOT CHO	1RD 2v4 S	P No 2(flat)						evcent a	and vertic	rale		

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.	(lb/size)	8=1800/Mechanical, 6=1839/0-3-8

2x4 SP No.3(flat)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-257/0, 5-6=-279/0, 2-3=-3427/0, 3-4=-3424/0

BOT CHORD 7-8=0/2707, 6-7=0/2749

WEBS 3-7=-1569/0, 2-8=-3108/0, 2-7=0/1148, 4-6=-3141/0, 4-7=0/985

NOTES-

WEBS

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

2) Plates checked for a plus or minus 0 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) Use USP MSH426 (With 16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 3-11-4 from the left end to 5-11-4 to connect truss(es) to front face of top chord.

7) Fill all nail holes where hanger is in contact with lumber.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 6-8=-10, 1-5=-226 Concentrated Loads (lb)

Vert: 3=-1605(F) 10=-199(F)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L		3-10-4		4	
	I		3-10-4		1	
Plate Offsets (X,Y)	[5:Edge,0-1-8], [7:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. TC 0.65 BC 0.33 WB 0.48 Matrix-P	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	in (loc) l/defl L/d 0 7 >999 480 1 6-7 >999 360 1 5 n/a n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2(flat) No.2(flat) No.3(flat)	I	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc except end verticals. Rigid ceiling directly applied or	tly applied or 3-10-4 10-0-0 oc bracing.	l oc purlins,

REACTIONS. (lb/size) 8=1831/Mechanical, 5=1831/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-921/0 TOP CHORD

BOT CHORD 7-8=0/921, 6-7=0/916, 5-6=0/916

WEBS 2-8=-2061/0, 3-5=-2049/0

NOTES-

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

2) Plates checked for a plus or minus 0 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-8=-10, 1-4=-1006(F=-780)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			3-10-4		1	
	I		3-10-4		1	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,E	Edge], [5:Edge,0-1-8], [6:0	0-1-8,Edge], [7:0-1-8,Ed	lge]		
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.38 BC 0.08 WB 0.11 Matrix-S	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	in (loc) l/defl L/d 0 6 >999 480 0 6-7 >999 360 0 5 n/a n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2(flat) P No.2(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc except end verticals. Rigid ceiling directly applied or	tly applied or 3-10-4 10-0-0 oc bracing.	oc purlins,

REACTIONS. (lb/size) 8=425/Mechanical, 5=425/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-8=-482/0, 3-5=-482/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Of	fsets (X,Y)	[7:0-1-8,Edge], [9:0-1-8,0	0-1-0], [10:0-1-8	3,0-1-0]								
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.Ó	Plate Grip DOL	1.00	тс	0.46	Vert(LL)	-0.00	` ź	>999	480	MT20	244/190
TCDL	73.0	Lumber DOL	1.00	BC	0.18	Vert(CT)	-0.01	6-7	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.19	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code FBC2017/T	PI2014	Matri	x-P						Weight: 41 lb	FT = 5%F, 0%E
LUMBE TOP CH	R- ORD 2x4 \$	SP No.2(flat)				BRACING- TOP CHOR	D:	Structu	ral wood	sheathing dir	ectly applied or 4-11-4	4 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.3(flat) WEBS

REACTIONS. (lb/size) 8=2307/0-3-0, 5=660/0-7-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-8=-1739/0, 2-3=-562/0

BOT CHORD 7-8=0/562, 6-7=0/518, 5-6=0/518

WEBS 2-8=-746/0, 3-5=-787/0

NOTES-

1) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

2) Plates checked for a plus or minus 0 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Use USP MSH426 (With 16d nails into Girder & 6-16d nails into Truss) or equivalent at 2-5-4 from the left end to connect truss(es) to back face of top chord.

5) Fill all nail holes where hanger is in contact with lumber.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1690 lb down at 0-2-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 5-8=-10, 1-4=-226

Concentrated Loads (lb) Vert: 1=-1690(B) 11=-199(B)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	6-6-13		1	7-6-13	8-6-13	11-4-12	
Γ	6-6-13			1-0-0	1-0-0	2-9-15	Į.
Plate Offsets (X,Y)	[2:0-2-4,Edge], [5:0-1-8,Edge], [8:0-1-8,E	dge], [9:0-1-8,Edge], [12:0	0-1-8,0-1-0], [13:0-	1-8,0-1-0], [1	4:0-1-8,0-1-0]		
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.81 BC 0.52 WB 0.67 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.07 9-10 0.18 9-10 0.03 7	l/defl L/d >999 480 >726 360 n/a n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	 No.2(flat) M 31(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structu except Rigid c	ral wood sheathing dire end verticals. eiling directly applied or	ctly applied or 6-0-0 (10-0-0 oc bracing.	oc purlins,

REACTIONS. (lb/size) 7=1294/0-3-8, 11=1308/0-5-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2527/0, 3-4=-2527/0, 4-5=-2098/0

BOT CHORD 10-11=0/1819, 9-10=0/2098, 8-9=0/2098, 7-8=0/2098

WEBS 2-11=-2100/0, 2-10=0/818, 3-10=-824/0, 4-10=0/771, 5-7=-2398/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

AOUIN No 681 D. STORIS No 681 STORIS SONAL Joaquin Velez PE No.6818: MTek IISA for any JOAQUIN VE 68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L		6-6-13	7-6-	13 8-6-13	3				21-3-4	ł		
Plate Offsets	(X,Y)	6-6-13 [5:0-1-8,Edge], [6:0-3-0,E [23:0-1-8,0-1-0]	<u>' 1-0-</u> dge], [8:0-1-12,Ed	0 <u>1-0-0</u> ge], [12:0))-3-0,0-0-0], [13	Edge,0-3-0], [1	5:0-5-0	,Edge],	<u>12-8-7</u> [16:0-2-8	,Edge], [17:0-3-	0,Edge], [22:0-1-8,0-	1-0],
LOADING (P TCLL 40 TCDL 73 BCLL (BCDL 5	osf) 0.0 3.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matrix	0.48 0.77 0.73 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.52 0.08	(loc) 16-17 16-17 13	l/defl >999 >481 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 188 lb	GRIP 244/190 187/143 FT = 5%F, 0%E
LUMBER- TOP CHORD	2x4 SF 1-10,3-	P No.2(flat) *Except* -12: 2x4 SP M 31(flat)				BRACING- TOP CHOR	D	Structur	al wood s	sheathing direct	ly applied or 6-0-0 oc	purlins,
WEBS	2x4 SF 14-21, 2x4 SF	³ No.2(flat) *Except* 13-20: 2x4 SP M 31(flat) ⁵ No.3(flat)				BOT CHOR	D	Rigid ce	iling dire	ctly applied or 1	0-0-0 oc bracing.	
REACTIONS	. (Ib/size	e) 21=2466/0-5-8, 13=24	466/0-4-0									
FORCES (lh) - Max	Comp /Max Ten - All ford	ses 250 (lb) or less	evcent \	when shown							

- TOP CHORD 12-13=-252/0, 2-4=-6588/0, 4-5=-6587/0, 5-6=-8247/0, 6-7=-9182/0, 7-8=-9182/0, 8-9=-6849/0, 9-11=-6819/0
- BOT CHORD 19-21=0/3983, 18-19=0/8247, 17-18=0/8247, 16-17=0/8247, 15-16=0/8531, 13-15=0/4144 WEBS
 - 5-18=0/758, 6-17=-586/0, 2-21=-4551/0, 2-19=0/3007, 5-19=-2625/0, 11-13=-4685/0,
 - 11-15=0/3077, 9-15=-575/0, 8-15=-1910/0, 8-16=0/768, 7-16=-791/0, 6-16=0/1342

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are MT20 plates unless otherwise indicated.

4) All plates are 3x6 MT20 unless otherwise indicated.

5) Plates checked for a plus or minus 0 degree rotation about its center.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	<u> </u>		7-6-13 8	-6-13 8-8-5 -0-0 0-1-8	<u>12-10-0</u> 4-1-11	
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [8:Edge,0	-1-8], [9:0-1-8,Edge], [10	:0-1-8,Edge], [12:Edge,0-	1-8], [13:0-1-8,0-1-0], [14:0-1	-8,0-1-0]	
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.59 BC 0.74 WB 0.69 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(CT) -0.26 Horz(CT) 0.03	(loc) I/defl L/d 10-11 >999 480 10-11 >578 360 8 n/a n/a	PLATES G MT20 2 Weight: 70 lb	RIP 44/190 FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P M 31(flat) P M 31(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc	purlins,

REACTIONS. (lb/size) 8=1477/Mechanical, 12=1477/0-5-8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 7-8=-258/0, 2-3=-2979/0, 3-4=-2979/0, 4-5=-2831/0, 5-6=-2831/0

BOT CHORD 11-12=0/2042, 10-11=0/2831, 9-10=0/2831, 8-9=0/2080

WEBS 4-10=-301/0, 5-9=-661/0, 2-12=-2384/0, 2-11=0/1093, 3-11=-600/0, 4-11=-67/384, 6-8=-2413/0, 6-9=0/1178

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	8-0-12		9-0-12	10-0-1210 ₁ 2 _Γ 4	14-8-8
	8-0-12		1-0-0	1-0-0 0-1-8	4-6-4
Plate Offsets (X,Y)	[2:0-3-8,Edge], [5:0-3-0,0-0-0], [8:Edge,0	-1-8], [9:0-1-8,Edge], [10:	:0-1-8,Edge], [12:Edge,	0-1-8]	
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.40 BC 0.63 WB 0.89 Matrix-S	DEFL. Vert(LL) -0.0 Vert(CT) -0.2 Horz(CT) 0.0	in (loc) l/defl L/d 9 10-11 >999 480 7 10-11 >643 360 5 8 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 99 lb FT = 5%F, 0%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	 M 31(flat) M 31(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.

REACTIONS. (lb/size) 12=1706/Mechanical, 8=1706/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-12=-260/0, 7-8=-289/0, 2-3=-3985/0, 3-4=-3985/0, 4-5=-3894/0, 5-6=-3894/0

BOT CHORD 11-12=0/2531, 10-11=0/3894, 9-10=0/3894, 8-9=0/2498

WEBS 5-9=-1047/0, 2-12=-2906/0, 2-11=0/1679, 3-11=-832/0, 4-11=-223/271, 6-8=-2868/0, 6-9=0/1860

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) All plates are MT20 plates unless otherwise indicated.

4) Plates checked for a plus or minus 0 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

NO 68182 PD. STATE OF NO RIDACINA JOAQUIN VEL NO 68182 CENSON CENSON NO 68182 CENSON CENSON NO 68182 CENSON CENS

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1	4-11-8	8-0-12	9-0-12	10-0-12	14-8-8
		4-11-8	3-1-4	1-0-0	1-0-0	4-7-12
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,0-	0-0], [10:0-1-8,Edge], [11:0	0-1-8,Edge]		
LOADI TCLL TCDL BCLL BCDL	NG (psf) 40.0 73.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.96 BC 0.79 WB 0.52 Matrix-S	DEFL. ir Vert(LL) -0.06 Vert(CT) -0.20 Horz(CT) 0.03	n (loc) l/defl L/d 6 9-10 >999 480 0 9-10 >577 360 3 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 82 lb FT = 5%F, 0%E
LUMB TOP C BOT C WEBS	ER- HORD 2x4 SI HORD 2x4 SI 2x4 SI	P No.2(flat) P No.2(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 1-7-8 oc purlins, r 10-0-0 oc bracing.
REAC	TIONS. (Ib/siz	e) 13=667/Mechanical, 9=1185/Mechan	ical, 12=1560/0-7-0			

Max Grav 13=724(LC 8), 9=1188(LC 4), 12=1616(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-536/0, 3-4=-537/0, 4-5=-1883/0, 5-6=-1883/0, 6-7=-1883/0

BOT CHORD 12-13=0/787, 11-12=0/1516, 10-11=0/1883, 9-10=0/1568 WEBS

5-11=-571/0, 6-10=-270/0, 3-12=-489/0, 2-13=-912/0, 2-12=-547/0, 4-12=-1400/0,

7-9=-1818/0, 7-10=0/419, 4-11=0/751

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) As requested, plates have not been designed to provide for placement tolerances or rough handling and erection conditions. It is

the responsibility of the fabricator to increase plate sizes to account for these factors.

3) Plates checked for a plus or minus 0 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED WITER REFERENCE PAGE MIL-14's rev. 10/03/2013 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
413220	FG1	FLOOR	1	2		T16796592
TIBBETTS LUMBER	R CO LLC, LUTZ, FL			8.240 s De	Job Reference (optional) ec 6 2018 MiTek Industries,	Inc. Tue Apr 16 12:12:10 2019 Page 1
2-10-1	<u>5-4-11 7-11-4 10-9</u>	-3 13-7-1 16-5-0 18- 15 2.0.15 2.0.15 2.0	ID:LTHF4EcV9tayz	xn_hS4Of 26-5-6	oznULZ-?uDNUiE6FRuIgvov <u>29-1-4</u> 31-9-2 34 2-7.14	/D9NRSaKD5TKB2Wg9du80ENzQ8kJ I-5-0 37-0-14 39-10-8 7-14 2-7-14 2-9-10
2-10-1	2-0-9 2-0-9 2-9-	10 2-9-10 2-9-10 2-	3-6 2-5-10 2-5-10 2	2-9-10	2-7-14 2-7-14 2-	Scale = 1:67.2
					1	
		THIS TRU PROPER	ISS IS NOT SYMMETRIC. ORIENTATION IS ESSEN	TIAL.		
		L			-	
3x8	3 = 4x4 = 3x8 =	4x4 = 5x8 =	3x10 = 5x5 =	= 4x6	= 3x8 $=$ 5x10 $=$	= 5x8 =
1 33 2	343 35 4 36	5 37 6 38 7 39	8 9 40 41 10	42 11	1 43 12 44 13 4	5 14 46 1547 48 16
32 3 ⁻	1 30 29	28 27 26 7x8 - 4x8 -	25 24 23	2	2 21 20 8 - 4×4 -	19 18 17 4x8 — 5x6 —
4x0 —	4,44 — 4,44 —	7.0 - 4.0 -	3.0 - 3.3 - 3.8	_ //	0 — 4,44 —	4x0 — 5x0 —
2-10-1	<u>5-4-11</u> 7-11-4 10-9	-3 13-7-1 16-5-0 18-	-8-8 <u>21-2-2</u> 23-7-12 2	26-5-6	<u>29-1-4</u> <u>31-9-2</u> <u>34</u>	1-5-0 <u>37-0-14 39-10-8</u>
Plate Offsets (X,Y)-	- [4:0-3-8,0-1-8], [7:0-3-0,0)-3-0], [9:0-3-8,0-1-8], [11:0-2-0,0-	-1-12], [12:0-3-8,0-1-8], [13:0-3	8-8,0-3-0],	[22:0-4-0,0-4-8], [23:0-3-8]	,0-2-8], [28:0-4-0,0-4-8],
	[32:0-1-12,0-2-0]					
LOADING (psf) TCLL 40.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.00 TC 0.67	7 DEFL. 7 Vert(LL) -0.0	in (loc) 7 20	l/defl L/d >999 480	PLATES GRIP MT20 244/190
TCDL 73.0 BCLL 0.0	Lumber DOL Rep Stress Incr	1.00 BC 0.85 NO WB 0.72	5 Vert(CT) -0.2 2 Horz(CT) 0.0	0 19-20	>962 360 n/a n/a	
BCDL 5.0	Code FBC2017/T	PI2014 Matrix-MS				Weight: 685 lb FT = 10%
LUMBER-	CD M 21 *Eveent*		BRACING-	Structur	rol wood oboothing directly	copplied or 6.0.0 co purling
13-	16: 2x4 SP No.2			except	end verticals.	
WEBS 2x4	SP No.2 SP No.2 *Except*		BOT CHORD	Rigid ce	eiling directly applied or 6-0	J-U oc bracing.
1-3	2,16-17: 2x6 SP No.2					
REACTIONS. A (lb) - Ma	II bearings 0-3-8 except (jt=le x Grav All reactions 250 lb	ength) 32=Mechanical, 23=0-5-8. or less at joint(s) except 32=1045	5(LC 5), 17=3521(LC 5), 29=75	500(LC 3),		
	23=10979(LC 4)				, ,	
FORCES. (lb) - M	ax. Comp./Max. Ten All fo	rces 250 (lb) or less except when	shown.			
10P CHORD 1- 8-	·32=-653/0, 2-3=0/2280, 3-4: ·9=-3549/0, 9-10=0/3986, 10	=0/5914, 5-6=-4558/0, 6-7=-4558/ -11=0/9785, 11-12=-794/151, 12-	0, 7-8=-3549/0, 13=-6606/0,			
13 BOT CHORD 3	3-14=-8649/0, 14-15=-8649/0 1-32=0/805, 30-31=0/805, 29), 15-16=-362/0, 16-17=-616/0)-30=-2280/0, 28-29=-5914/0, 27-2	28=0/535, 26-27=0/3992,			
2:	5-26=0/3549, 24-25=-3986/0 0-21=0/9188, 19-20=0/9181.	, 23-24=-9785/0, 22-23=-377/535, 18-19=0/5727, 17-18=0/5727	, 21-22=0/6606,			
WEBS 2-	32=-710/73, 2-30=-2663/0, 3	3-30=0/787, 3-29=-4444/0, 4-29=- -27=-1602/0 7-27=0/1046 7-26=-	4621/0, 4-28=0/6591, -1608/0_8-25=-1900/0			
9.	25=0/7616, 9-24=-4469/0, 1	0-24=0/6886, 10-23=-5086/0, 11-2	23=-10781/0,			NOAGENELES
14 14	1-22=0/2342, 12-22=-6669/0 4-19=-1256/0, 15-19=0/3249	, 12-21=0/1396, 13-21=-2941/0, 1 , 15-17=-6004/0	3-19=-003/0,			I STOLINSE.
NOTES-						No 68182
 3-ply truss to be Top chords conn 	connected together with 10d ected as follows: 2x6 - 2 row	(0.131"x3") nails as follows: /s staggered at 0-9-0 oc, 2x4 - 1 ro	ow at 0-9-0 oc.			* Mal
Bottom chords c	onnected as follows: 2x6 - 2 as follows: 2x4 - 1 row at 0-	rows staggered at 0-9-0 oc.				D STAFA OF W
2) All loads are con	sidered equally applied to al	plies, except if noted as front (F)	or back (B) face in the LOAD	CASE(S)	section. Ply to	
3) Unbalanced floo	r live loads have been consid	lered for this design.	, unless otherwise indicated.			CORID GIN
 All plates are 2x4 Refer to girder(s) 	4 MT20 unless otherwise ind) for truss to truss connectior	icated. ns.				ONALE
 Recommend 2x6 Strongbacks to b 	strongbacks, on edge, space be attached to walls at their o	ed at 10-0-0 oc and fastened to e uter ends or restrained by other m	each truss with 3-10d (0.131" > neans.	(3") nails		Joaquin Velez PE No.68182
	tandard	·····, ····,				MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610
						Date: April 17 2019
Continued on page	2					פוטב, זו ווקרי
WARNING - Veri	fy design parameters and READ N	DTES ON THIS AND INCLUDED MITEK RE	FERENCE PAGE MII-7473 rev. 10/03/2	015 BEFOR	E USE.	
Design valid for use a truss system. Before building design Bro	only with MITek® connectors. This of one use, the building designer must water indicated is to prevent buckling	tesign is based only upon parameters show erify the applicability of design parameters of individual truss web and/or chord memb	wn, and is tor an individual building con and properly incorporate this design in pers only. Additional temporary and pe	nponent, not to the overal rmanent bra	ll Icing	
is always required for	or stability and to prevent collapse w	th possible personal injury and property da	mage. For general guidance regarding	g the BCSI Buildir	na Component	

Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

Jol)	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
						T16796592
41:	3220	FG1	FLOOR	1	2	
					3	Job Reference (optional)
Т	IBBETTS LUMBER CO LLC	C, LUTZ, FL		8	8.240 s De	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:12:11 2019 Page 2

8.240 s Dec 6 2018 MiTek Industries, Inc. Tue Apr 16 12:12:11 2019 Page 2 ID:LTHF4EcV9tayzxn_hS4OfoznULZ-T4nli2Fk0l09H3N6mtug?osOrtgQnzvlsYtampzQ8kl

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-16=-326, 17-32=-10 Concentrated Loads (lb)

Vert: 2=-320 5=-472 8=-472 12=-373 33=-326 34=-391 35=-472 36=-472 37=-472 38=-472 39=-472 40=-472 41=-472 42=-472 43=-1483 44=-392 45=-402 46=-396 47=-323 48=-326

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2-4-1	4-6-7	6-4-12	8-11-1		11-1-7	13-5-8
2-4-1	2-2-5	1-10-5	2-6-5	I	2-2-5	2-4-1
Plate Offsets (X,Y)	[5:0-3-8,0-1-8], [10:0-3-8,0-1-8], [11:0-2-0),0-1-8], [12:0-3-8,0-2-0]				
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCodeFBC2017/TPI2014	CSI. TC 0.87 BC 0.78 WB 0.87 Matrix-MS	DEFL. in Vert(LL) -0.08 Vert(CT) -0.26 Horz(CT) 0.04	(loc) 11 11 8	l/defl L/d >999 480 >603 360 n/a n/a	PLATES GRIP MT20 244/190 Weight: 271 lb FT = 10%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 1-14: 2	No.2 DSS No.2 *Except* x10 SP No.2, 7-8: 2x6 SP No.2		BRACING- TOP CHORD BOT CHORD	Structur except e Rigid ce	al wood sheathing dired and verticals. iling directly applied or	ctly applied or 3-9-3 oc purlins, 10-0-0 oc bracing.
REACTIONS. (Ib/size	e) 14=15535/0-5-8, 8=5376/0-3-8					
FORCES. (lb) - Max. TOP CHORD 1-14= 6-7=- BOT CHORD 13-14 8-9=C WEBS 2-14= 5-11=	Comp./Max. Ten All forces 250 (lb) or l 8293/0, 1-2=-1307/0, 2-3=-19827/0, 3-4 704/0, 7-8=-580/0 I=0/11756, 12-13=0/11756, 11-12=0/198: /8405 12284/0, 2-13=-629/0, 2-12=0/9214, 3- -0/6165, 5-10=-3753/0, 6-10=0/8829, 6-9	ess except when shown. =-21701/0, 4-5=-21701/0 27, 10-11=0/16139, 9-10= 12=-4153/0, 3-11=0/2234 =-346/0, 6-8=-8873/0	, 5-6=-16139/0, =0/8405, , 4-11=-4740/0,			
NOTES- 1) 3-ply truss to be con Top chords connecte Bottom chords connected by connections have 3) Recommend 2x6 str Strongbacks to be at LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 1-7=-3 Concentrated Loads Vert: 1=-75	nected together with 10d (0.131"x3") nail ed as follows: 2x10 - 2 rows staggered at follows: 2x4 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except if is been provided to distribute only loads n ongbacks, on edge, spaced at 10-0-0 oc ttached to walls at their outer ends or res dard alanced): Lumber Increase=1.00, Plate In 26, 8-14=-10 (lb) 10 2=-2256 3=-2217 4=-4613	s as follows: 0-9-0 oc, 2x6 - 2 rows sta at 0-9-0 oc. noted as front (F) or back oted as (F) or (B), unless and fastened to each tru trained by other means.	aggered at 0-9-0 oc. (B) face in the LOAD CA otherwise indicated. ss with 3-10d (0.131" X 3	ASE(S) s 3") nails.	ection. Ply to	PP. STATOF

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced floor live loads have been considered for this design.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)

Vert: 1-7=-326, 8-14=-10

- Concentrated Loads (lb)
- Vert: 3=-1821 15=-326 16=-320 17=-1190 18=-1190 19=-1190

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1-6-8	2-6-8	2-3-8	2-11-8	2-5-12	2-5-12
Plate Offsets (X,Y)	[2:0-3-0.0-2-8], [5:0-3-8.0-2-0], [11:0-3-8	.0-2-0]			
LOADING (psf) TCLL 40.0 TCDL 73.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.87 BC 0.79 WB 0.63	DEFL. in (loc Vert(LL) -0.08 1: Vert(CT) -0.16 12-13 Horz(CT) 0.01 10) l/defl L/d 2 >999 480 3 >675 360 0 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143
BCDL 5.0	Code FBC2017/TPI2014	Matrix-MS			Weight: 164 lb FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP 1-14,7-	P No.2 P DSS No.2 *Except* 8: 2x6 SP No.2, 5-11: 2x4 SP M 31		BRACING- TOP CHORD Struc excep BOT CHORD Rigid	tural wood sheathing diru t end verticals. ceiling directly applied o	ectly applied or 2-11-10 oc purlins, or 6-0-0 oc bracing.
REACTIONS. (Ib/size	e) 14=8004/0-5-8, 8=608/Mechanical,	10=7421/0-7-0			
FORCES. (lb) - Max. TOP CHORD 1-14= 7-8=- BOT CHORD 13-14 WEBS 2-14= 6-10=	Comp./Max. Ten All forces 250 (lb) or =-1031/0, 1-2=-571/0, 2-3=-7328/0, 3-4=- 599/0 4=0/7289, 12-13=0/7289, 11-12=0/7328, =-9426/0, 2-13=0/1215, 3-12=-640/0, 4-1 =-1944/0, 6-9=-435/0, 6-8=0/608	less except when shown. 7328/0, 4-5=-7328/0, 5-6 10-11=-1979/0, 9-10=-41 1=-1452/0, 5-11=0/10155	=0/1979, 8/0, 8-9=-418/0 5, 5-10=-5309/0,		
NOTES- 1) 2-ply truss to be con Top chords connectt Bottom chords conn Webs connected as oc, member 3-12 2x 2x4 - 1 row at 0-9-0 oc. 2) All loads are conside ply connections have	Inected together with 10d (0.131"x3") nai ed as follows: 2x6 - 2 rows staggered at ected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-7-0 oc, Except 4 - 1 row at 0-9-0 oc, member 4-11 2x4 oc, member 10-6 2x4 - 1 row at 0-9-0 oc ered equally applied to all plies, except if a been provided to distribute only loads	Is as follows: 0-9-0 oc, 2x4 - 1 row at 0 at 0-9-0 oc. nember 2-13 2x4 - 1 row 1 row at 0-9-0 oc, memb , member 6-9 2x4 - 1 row noted as front (F) or back	-9-0 oc. at 0-9-0 oc, member 12-2 2x4 er 11-5 2x4 - 1 row at 0-9-0 oc at 0-9-0 oc, member 8-6 2x4 - < (B) face in the LOAD CASE(S	1 row at 0-9-0 member 5-10 1 row at 0-9-0) section. Ply to	No 68182
a) Upbalanced floor live	e been provided to distribute only loads r	noted as (F) or (B), unless	s otherwise indicated.		E * : * =
4) All plates are MT20	plates unless otherwise indicated.	Sign.			
5) Refer to girder(s) for	truss to truss connections.	ind Duilding designs a	an an inclusion la sub-transmitta de state		PT.
6) Load case(s) 1, 2, 3 for the intended use	, 4, 5, 6, 7, 8, 9, 10 has/have been modif of this truss.	ied. Building designer mu	ist review loads to verify that the	ey are correct	STAVE OF
7) Recommend 2x6 str	ongbacks, on edge, spaced at 10-0-0 of	c and fastened to each tru	uss with 3-10d (0.131" X 3") nai	ls.	CORIDA ST
8) "NAILED" indicates	ttached to walls at their outer ends or res 3-10d (0.148"x3") or 3-12d (0.148"x3.25"	strained by other means.	ines.		SSIEN
9) Hanger(s) or other c	connection device(s) shall be provided su	fficient to support concen	trated load(s) 1047 lb down at	2-2-12, 1047 lb	UNAL SUN
down at 4-2-12, and connection device(s)	d 1047 lb down at 6-2-12, and 1047 lb do	own at 8-2-12 on bottom	chord. The design/selection of	such	Joaquin Velez PE No.68182
LOAD CASE(S) Stand	dard				MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. April 17,2019

Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
		F I A A B				T16796596
413220	FG5	FLOOR	1	2		
				0.040 e De	Job Reference (optional)	Apr 16 10:10:10 2010 Dags 2
TIBBETTS LUMBER COLLO	J, LUTZ, FL		ID:LTHF4EcV9ta	8.240 S De ayzxn_hS40	oc 6 2018 Millek Industries, Inc. Tue A DfoznULZ-QTvW7kH_YMGtXMXUulx8	4DyhGgNpFvjbJsMhrizQ8kG
LOAD CASE(S) Standard						
1) Dead + Floor Live (balar Uniform Loads (plf)	8-1410	00, Plate Increase=1.00				
Concentrated Loads (lb)	21047(B) 111047(B) 5		228 18-228 10-2	26 2010	47(B) 211047(B) 22123(B) 23	124/B)
2) Dead: Lumber Increase-	-1 00 Plate Increase-1 00		220 10-220 19-3	20 20=-10-	+/(D) 21=-10+/(D) 22=-125(D) 25=-	124(D)
Liniform Loads (nlf)						
Vert: 1-7=-326.	8-14=-10					
Concentrated Loads (lb)						
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	=-228 6=-323 15=-1197 16=-228 17=-	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
3) 1st Dead + Floor Live (u	nbalanced): Lumber Increa	ase=1.00, Plate Increase=1.00				. ,
Uniform Loads (plf)	5-7246 8-1410					
Concentrated Loads (lb)	07-240,014-10					
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	228 6=-323 15=-1197 16=-228 17=-	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
4) 2nd Dead + Floor Live (unbalanced): Lumber Incre	ase=1.00, Plate Increase=1.00				()
Uniform Loads (plf)						
Vert: 1-5=-246,	5-7=-326, 8-14=-10					
Concentrated Loads (lb)	1					
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	=-228 6=-323 15=-1197 16=-228 17=-	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
5) 3rd unbalanced Dead: L	umber Increase=1.00, Plate	e Increase=1.00				
Uniform Loads (plf)	5 7 040 0 44 40					
Vert: 1-5=-326,	5-7=-246, 8-14=-10					
Vort: 2- 4192 1	2- 1047(P) 11- 1047(P) 5	- 229 6- 222 15- 1107 16- 229 17-	220 10 220 10 2	26 20- 10	47(B) 21_ 1047(B) 22_ 122(B) 22_	124(P)
6) 4th unbalanced Dead: L	2 = 1047(B) $1 = 1047(B)$ 3	=-220 0=-323 13=-1197 10=-220 17=- e Increase=1 00	220 10=-220 19=-3	20 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
Uniform Loads (plf)		5 11010400-1.00				
Vert: 1-5=-246.	5-7=-326. 8-14=-10					
Concentrated Loads (lb)						
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	=-228 6=-323 15=-1197 16=-228 17=-	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
7) 1st chase Dead + Floor	Live (unbalanced): Lumber	Increase=1.00, Plate Increase=1.00				
Uniform Loads (plf)						
Vert: 1-4=-326,	4-5=-246, 5-7=-326, 8-14=	-10				
Concentrated Loads (lb)						
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	=-228 6=-323 15=-1197 16=-228 17=-	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
8) 2nd chase Dead + Floor	Live (unbalanced): Lumbe	r increase=1.00, Plate increase=1.00				
Vort: 1-3246	3-7326 8-1410					
Concentrated Loads (lb)	5-7=-520; 5-14=-10					
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	228 6323 151197 16228 17	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
9) 3rd chase Dead: Lumbe	r Increase=1 00 Plate Incr	ease=1.00	220 10- 220 10- 0	20 20- 10	(b) 21= 10 (b) 22= 120(b) 20=	121(0)
Uniform Loads (plf)						
Vert: 1-4=-326,	4-5=-246, 5-7=-326, 8-14=	-10				
Concentrated Loads (lb)	1					
Vert: 2=-4192 1	2=-1047(B) 11=-1047(B) 5	=-228 6=-323 15=-1197 16=-228 17=-	228 18=-228 19=-3	26 20=-104	47(B) 21=-1047(B) 22=-123(B) 23=-	124(B)
10) 4th chase Dead: Lumb	er Increase=1.00, Plate Inc	crease=1.00				
Uniform Loads (plf)						
Vert: 1-3=-246	, 3-7=-326, 8-14=-10					
Concentrated Loads (It	ა)					

Vert: 2=-4192 12=-1047(B) 11=-1047(B) 5=-228 6=-323 15=-1197 16=-228 17=-228 18=-228 19=-326 20=-1047(B) 21=-1047(B) 22=-123(B) 23=-124(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

41000 Pion	Job	Truss	Truss Type	Qty I	Ply	348 Shore Drive E.	T16706507			
Integents Control (1) CUTZ, R Control (1) Contro (1) <thcontro (1)<="" th=""> Co</thcontro>	413220	FG6	FLOOR	1	3		110/90397			
10.1 F#4CPT0Provide B400 Provide 2 (1970 Provide	TIBBETTS LUMBER CO LLC	LUTZ, FL		8.:	240 s Dec	Job Reference (optional) c 6 2018 MiTek Industries	s, Inc. Tue Apr 16 12:12:14 2019 Page 1			
249 241 241 244 2	2-9-9	5-3-11 7-9-12	ID:LTHF 10-7-0 13-4-4 16-	4EcV9tayzxr 1-8	n_hS4Ofc 18-5-0	znULZ-ufTuK4HcJgOk8V 21-1-9	V6hS?SNdQUqS4k2_LklYW6EN8zQ8kF 23-8-7 _ 26-3-8 26-5-0			
Description 201 40 40 60 201 316 316 512 201 1 1 0 <th0< th=""> <th0< td="" th<=""><td>2-9-9</td><td>2-6-1 2-6-1</td><td>2-9-4 2-9-4 2-5</td><td>-4</td><td>2-3-8</td><td>2-8-9</td><td>2-6-13 2-7-1 0-1¹8</td></th0<></th0<>	2-9-9	2-6-1 2-6-1	2-9-4 2-9-4 2-5	-4	2-3-8	2-8-9	2-6-13 2-7-1 0-1 ¹ 8			
$ \frac{1}{10^{10} \text{ m}^{10} \text{ m}^$							Scale = 1:44.5			
1 2 3 2 3 2 3 2 3	2x4 4x8	= 4x8 =	5x10 = 6x8 = 2x4	3x10 =	=	2x4 3x4 =	= 5x12 $=$ 2x4			
				, 						
Log Sol 17.4 10.4 19.4 1							848			
22 22 21 24 10 25 127 28 17 20 16 15 30 14 31 13 24 14 46 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 16 16 16 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 14 15 30 15 16 15 30 15 16 15 30 15 16 15 30 <t< td=""><td></td><td></td><td></td><td>Ľ.</td><td></td><td></td><td></td></t<>				Ľ.						
40 E Ad E Ad E Ad E Ad E Ad E TIDUE	22 23 21 2	24 20 25		16		15 30 14	31 13 32 12			
THORE THORE <th< td=""><td>4x6 = 2x4</td><td> 7x8 = 4x</td><td>8 = 8x10 = THD46 8x12 =</td><td>3x10</td><td>П</td><td>6x6 = THD46 5x5</td><td>= 2x4 4x6 =</td></th<>	4x6 = 2x4	7x8 = 4x	8 = 8x10 = THD46 8x12 =	3x10	П	6x6 = THD46 5x5	= 2x4 4x6 =			
29-9 59-11 79-12 107-0 10-44 19-19 20-4	THD46 TH	THD46	THD46 THD46							
LOADING [p:s] TCLL 400 TCLL 400 TCL 400 Lumiter DOL 1:00 BCLL 0:0 BCLL	2-9-9 2-9-9 Plate Offsets (X,Y) [2:0 [20:	5-3-11 7-9-12 2-6-1 2-6-1 -1-8,0-1-12], [3:0-3-8,0-2-0], 0-3-4,0-4-12], [22:0-1-12,0-2-	+ 10-7-0 + 13-4-4 + 16- 2-9-4 + 2-9-4 + 2-5 4:0-3-8,0-2-8], [5:0-2-0,0-3-0], [7:0-3-8,0-1-8], 0]	1-8 1-4 [15:0-3-0,0-	<u>18-5-0</u> 2-3-8 4-0], [17	<u>21-1-9</u> <u>2-8-9</u> :0-6-0,0-5-0], [18:0-3-8,	23-8-7 26-5-0 2-6-13 2-8-9 0-4-4], [19:0-3-8,0-2-0],			
TCUL TCUL 100 TCUL 200	LOADING (psf)	SPACING- 2-0-0	CSI. DEFL.	in	(loc)	l/defl L/d	PLATES GRIP			
Index Part of the provided of the predistry the provided the provided the provid	TCLL 40.0	Plate Grip DOL 1.00	TC 0.97 Vert(L	_) -0.15	15	>999 480	MT20 244/190			
BCDL 5.0 Code FBC2017/TPI2014 Matrix-MS Weight 452 Ib FT = 10% LUMBER- TOP CHORD 2x4 SP M 31 "Except" TOP CHORD Structural wood sheathing directly applied or 2-7-9 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 2-7-9 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. Structural wood sheathing directly applied or 6-0-0 oc bracing. VERS 2x4 SP No.2 "Except" BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. FOP CHORN (b) Structural wood sheathing directly applied or 6-0-0 oc bracing. Structural wood sheathing directly applied or 6-0-0 oc bracing. FORES. (b) Structural wood sheathing directly applied or 6-0-0 oc bracing. Structural wood sheathing directly applied or 6-0-0 oc bracing. FORES. (b) Structural wood sheathing directly applied or 6-0-0 oc bracing. Structural wood sheathing directly applied or 6-0-0 oc bracing. FORES. (b) Structural wood sheathing directly applied or 6-0-0 oc bracing. Structural wood sheathing directly applied or 6-0-0 oc bracing. FORES. (b) Structural wood sheathing directly applied or 6-0-0 oc bracing. Structural wood sheathing directly applied or 6-0-0 oc bracing. FORES. (b)	BCLL 0.0	Rep Stress Incr NC	WB 0.65 Horz(C	T) -0.45 T) 0.03	12	n/a n/a				
LUMBER- TOP CHORD 2x4 SP M 31 *Except * TOP CHORD Structural wood sheathing directly applied or 2-7-9 oc purlins, except end verticals. BOT CHORD 2x4 SP No.2 *Except * 72P CHORD Rigid calling directly applied or 2-7-9 oc purlins, except end verticals. BOT CHORD X4 SP DS 2x4 SP No.2 *Except * 72x11+22:x68 SP DS 72x11+22:x68 SP DS 72x11+22:x68 SP DS 72x11+22:x68 SP DS 72x11+22:x68 SP DS 72x11+22:x68 SP DS 72x11+22:x69 SP No.2 *Except * 72x11+22:x69 SP No.2 * 72x11+22:	BCDL 5.0	Code FBC2017/TPI2014	Matrix-MS				Weight: 452 lb $FI = 10\%$			
REACTIONS. (Ib/size) 22=744/Mechanical, 12=5681/0-3-8, 19=17084/0-7-0 Max Grav 22=1045(LC 3), 12=5687(LC 4), 19=17084/LC 1) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 1:22=-0320, 2-30-07783, 3-40-016711, 4-5=02742, 5-6=-8882/0, 6-7=-8882/0, 7-8=-16478/0, 9-9=-164780, 9-10=-158880, 10-11=-5740, 11-12=-354/0 DOT CHORD 21-22=-1220, 202-11-220, 71820, 19-10=-7780, 11-12=-354/0 DOT CHORD 21-22=-1202, 02-21=-12220, 19-200-77800, 15-11-90-12840, 8-15=-2740, 9-15=0/964, 9-14=9780, 10-14=0/6881, 10-13=0/1205, 10-12=-103300 NOTES NOTES 1) 3-ply truss to be connected together with 10d (0.131*X3*) nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-90 oc, Except member 3-20 2x4 - 2 rows staggered at 0-4-0 oc, member 5-18 2x4 - 2 rows staggered at 0-0-0 oc. Webs connected as follows: 2x4 - 1 row at 0-90 oc, Except member 3-20 2x4 - 2 rows staggered at 0-4-0 oc, member 5-18 2x4 - 2 rows staggered at 0-40 oc. Webs connected as follows: 2x4 - 1 row at 0-90 oc, Except member 3-20 2x4 - 2 rows staggered at 0-4-0 oc, member 5-18 2x4 - 2 rows staggered at 0-40 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 2) Unbalanced Zbś storngbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131*X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 3) Greeomend Zbś storngbacks, on edge, spaced at 10-0-0 oc on daf stened to each truss with 3-10d (0.131*X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 4) Refer to girder(5) for truss to truss connections. 5) Recommend Zbś distrongbacks, on edge, spaced at 10-0-0 oc equivalent spaced at 2-0-0 oc max. starting at 1-3-4 from the left end to 24-3-4 to connect truss(e) to front face of bo	LUMBER- TOP CHORD 2x4 SP M 3 5-11: 2x4 S BOT CHORD 2x6 SP DS WEBS 2x4 SP No. 1-22,11-12:	81 *Except* SP No.2 S 2 *Except* : 2x6 SP No.2, 4-18,5-17: 2x4	BRACI TOP CI BOT CI SP M 31	NG- Hord Hord	Structura except e Rigid cei	al wood sheathing direct nd verticals. lling directly applied or 6	lly applied or 2-7-9 oc purlins, 6-0-0 oc bracing.			
FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 1:22=-3030, 2:3=0/7786, 34=0/16711, 4:5=0/2742, 5:6=88820, 0;6-7=88820, 7:8=-164720, 0;8-9=-1647810, 9:19=-167110, 17:18=-27420, 16-17=0/16478, 15:16=-0/15478, 13:16=-0/15488, 13:14=0/9740, 12:12=-30/9740 WEBS 2:22=0/1567, 2:21=0/2334, 2:20=-74310, 3:20=0/4341, 3:19=-104110, 4:19=-75940, 8:15=-274/0, 9:15=0/964, 9:14=-976/0, 10:14=0/6881, 10:13=0/1200, 7:16=0/2840, 8:15=-274/0, 9:15=0/964, 9:14=-976/0, 10:14=0/6881, 10:13=0/1205, 10:12=-10330/0 NOTES- 1) 3-ply truss to be connected together with 10d (0:131*3') nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-5-0 oc. Webs connected as follows: 2x6 - 1 row staggered at 0-5-0 oc. Webs connected as follows: 2x6 - 1 row staggered at 0-5-0 oc. Webs connected as follows: 2x6 - 1 row staggered at 0-5-0 oc. No 68182 No 68182	REACTIONS. (Ib/size) Max Grav	22=744/Mechanical, 12=568 22=1045(LC 3), 12=5687(LC	1/0-3-8, 19=17084/0-7-0 4), 19=17084(LC 1)							
 8-15=-274/0, 9-15=0/964, 9-14=-976/0, 10-14=0/6881, 10-13=0/1205, 10-12=-10330/0 NOTES- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 3-20 2x4 - 2 rows staggered at 0-4-0 oc, member 5-18 2x4 - 2 rows staggered at 0-4-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced floor live loads have been considered for this design. 4) Refer to girder(s) for truss to truss connections. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Use USP THD46 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-3-4 from the left end to 24-3-4 to connect truss(es) to front face of bottom chord. 7) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (pf) Vert: 1-11=-226, 12-22=-10 Continued on page 2 	FORCES. (lb) - Max. Com TOP CHORD 1-22=-30 7-8=-164' 7-8=-164' BOT CHORD 21-22=-12 16-17=0/' 2-22=0/14 WEBS 2-22=0/14 4-18=0/15 4-18	np./Max. Ten All forces 250 3/0, 2-3=0/7788, 3-4=0/1671 78/0, 8-9=-16478/0, 9-10=-15 222/0, 20-21=-1222/0, 19-20 16478, 15-16=0/16478, 14-15 667, 2-21=0/2334, 2-20=-743 5528, 5-18=-5793/0, 5-17=0/	(lb) or less except when shown. , 4-5=0/2742, 5-6=-8882/0, 6-7=-8882/0, 888/0, 10-11=-574/0, 11-12=-354/0 =-7788/0, 18-19=-16711/0, 17-18=-2742/0, i=0/15888, 13-14=0/9740, 12-13=0/9740 1/0, 3-20=0/4431, 3-19=-10411/0, 4-19=-7594 2687, 6-17=-556/0, 7-17=-8439/0, 7-16=0/28-	/0, 10,						
NOTES- 1) 3-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-7-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 3-20 2x4 - 2 rows staggered at 0-4-0 oc, member 5-18 2x4 - 2 rows staggered at 0-4-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced floor live loads have been considered for this design. 4) Refer to girder(s) for truss to truss connections. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131* X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Use USP THD46 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-3-4 from the left end to 24-3-4 to connect truss(es) to front face of bottom chord. 7) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-11=-226, 12-22=-10 Continued on page 2	8-15=-274	4/0, 9-15=0/964, 9-14=-976/0	, 10-14=0/6881, 10-13=0/1205, 10-12=-10330	/0			ANNIHUR.			
Continued on page 2 April 17,2019	 NOTES- 1) 3-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-7-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-5-0 oc. Webs connected as follows: 2x6 - 1 row at 0-9-0 oc, Except member 3-20 2x4 - 2 rows staggered at 0-4-0 oc, member 5-18 2x4 - 2 rows staggered at 0-4-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced floor live loads have been considered for this design. 4) Refer to girder(s) for truss to truss connections. 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131* X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 6) Use USP THD46 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-3-4 from the left end to 24-3-4 to connect truss(es) to front face of bottom chord. 7) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (pfl) Vert: 1-11=-226, 12-22=-10 April 17 2019 									
	Continued on page 2						April 17,2019			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

[lob	Truss	Truss Type	Qty	Ply	348 Shore Drive E.	
						1	16796597
ŀ	13220	FG6	FLOOR	1	2		
					<u>ວ</u>	Job Reference (optional)	
	TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Deo	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:12:14 2019	Page 2
			ID:LTHF	4EcV9tayz	kn_hS4Ofc	znULZ-ufTuK4HcJgOk8W6hS?SNdQUqS4k2_LklYW6EN8	zQ8kF

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 20=-1696(F) 16=-1178(F) 15=-1178(F) 23=-1696(F) 24=-1696(F) 25=-1696(F) 26=-1178(F) 27=-1178(F) 28=-1178(F) 29=-1178(F) 30=-1178(F) 31=-1178(F) 32=-1178(F) 32=-1178(F)

	3-6-2 3-6-2	6-8-12 3-2-10	9-11-6 3-2-10	13-5-8 3-6-2
Plate Offsets (X,Y)	[4:0-3-8,0-1-8]			
LOADING (psf) TCLL 60.0 TCDL 15.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TPl2	2-0-0 CSI. 1.00 TC 0.64 1.00 BC 0.52 YES WB 0.78 2014 Matrix-MS	DEFL. in (loc) I/defl L Vert(LL) -0.22 8 >700 48 Vert(CT) -0.30 8 >525 36 Horz(CT) 0.04 6 n/a n	/d PLATES GRIP 80 MT20 244/190 50 /a Weight: 63 lb FT = 10%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF 1-10:2	P No.2 P M 31 P No.2 *Except* 2x6 SP No.2		BRACING- TOP CHORD Structural wood shea except end verticals. BOT CHORD Rigid ceiling directly a	athing directly applied or 2-3-8 oc purlins, applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 10=1047/0-3-8, 6=1047/0-5-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-965/0, 1-2=-2996/0, 2-3=-3758/0, 3-4=-2704/0, 5-6=-251/0

BOT CHORD 9-10=0/298, 8-9=0/2989, 7-8=0/3752, 6-7=0/2699

WEBS 1-9=0/2764, 2-9=-679/0, 2-8=0/789, 3-7=-1094/0, 4-7=0/286, 4-6=-2650/0

NOTES-

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

	3-5-4 3-5-4	6-7-0 3-1-12	9-8-12 3-1-12	<u> </u>
Plate Olisets (X, Y)	[4:0-3-8,0-1-8]			
LOADING (psf) TCLL 60.0 TCDL 15.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TPl2	2-0-0 CSI. 1.00 TC 0.60 1.00 BC 0.50 YES WB 0.75 014 Matrix-MS	DEFL. in (loc) I/defl Vert(LL) -0.21 8 >744 Vert(CT) -0.28 8 >558 Horz(CT) 0.04 6 n/a	L/d PLATES GRIP 480 MT20 244/190 360 n/a Weight: 61 lb FT = 10%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF 1-10:2	P No.2 P M 31 P No.2 *Except* 2x6 SP No.2		BRACING- TOP CHORD Structural wood she except end verticals BOT CHORD Rigid ceiling directly	eathing directly applied or 2-5-3 oc purlins, s. y applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 10=1023/0-3-8, 6=1023/0-2-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-944/0, 1-2=-2868/0, 2-3=-3603/0, 3-4=-2597/0

BOT CHORD 9-10=0/286, 8-9=0/2862, 7-8=0/3597, 6-7=0/2592

WEBS 1-9=0/2650, 2-9=-665/0, 2-8=0/761, 3-7=-1047/0, 4-7=0/278, 4-6=-2547/0

NOTES-

Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
 Strongbacks to be attached to walls at their outer ends or restrained by other means.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

¹⁾ Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

L	3-5-4	6-7-0		9-8-12		13-2-0
	3-5-4	3-1-12		3-1-12		3-5-4
Plate Offsets (X,Y)	[4:0-3-8,0-1-8]				1	
LOADING (psf)	SPACING-	2-0-0 CSI.	DEFL.	in (loc) l/defl	L/d PL	ATES GRIP
TCLL 60.0	Plate Grip DOL	1.00 TC 0	0.58 Vert(LL)	-0.20 10 >767	480 MT	Г20 244/190
TCDL 15.0	Lumber DOL	1.00 BC 0	0.49 Vert(CT)	-0.26 10 >575	360	
BCLL 0.0	Rep Stress Incr	YES WB 0	0.74 Horz(CT)	0.03 8 n/a	n/a	
BCDL 5.0	Code FBC2017/TPI2	014 Matrix-N	MS		We	eight: 61 lb FT = 10%
LUMBER-	1		BRACING-		L.	
TOP CHORD 2x4 SF	P No.2		TOP CHORD	Structural wood	sheathing directly appli	ed or 2-5-13 oc purlins.
BOT CHORD 2x4 SF	OT CHORD 2x4 SP M 31			except end verti	cals.	
WEBS 2x4 SF	P No.2 *Except*		BOT CHORD	Rigid ceiling dire	ectly applied or 10-0-0 o	oc bracing.

REACTIONS. (lb/size) 12=1013/0-3-8, 8=1057/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-12=-934/0, 1-2=-2830/0, 2-3=-3536/0, 3-4=-2482/0, 5-8=-293/0

BOT CHORD 11-12=0/284, 10-11=0/2824, 9-10=0/3530, 8-9=0/2476

WEBS 1-11=0/2612, 2-11=-655/0, 2-10=0/731, 3-9=-1096/0, 4-9=0/282, 4-8=-2374/0

NOTES-

1) Refer to girder(s) for truss to truss connections.

1-12: 2x6 SP No.2

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

					1	1-0-0			
Plate Off	sets (X,Y)	[2:0-0-13,Edge]							
LOADIN	G (psf)	SPACING- 2-0-) CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.2	5 TC 0.82	Vert(LL) 0	0.00 5	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL 1.2	5 BC 0.16	Vert(CT) 0	0.00 5	>999	240		
BCLL	0.0 *	Rep Stress Incr YE	S WB 0.00	Horz(CT) 0	0.00 4	n/a	n/a		
BCDL	10.0	Code FBC2017/TPI2014	Matrix-MP	Wind(LL) -0	0.00 5	>999	240	Weight: 7 lb	FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=-68/Mechanical, 2=441/0-5-8, 4=-109/Mechanical Max Horz 2=133(LC 12) Max Uplift 3=-68(LC 1), 2=-541(LC 12), 4=-109(LC 1) Max Grav 3=116(LC 12), 2=441(LC 1), 4=177(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 0-1114 zone; cantilever left
- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 3, 541 lb uplift at joint 2 and 109 lb uplift at joint 4.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

Plate Offsets (X,Y)	late Offsets (X,Y) [2:0-3-13,0-0-0]											
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP								
TCLL 20.0	Plate Grip DOL 1.25	TC 0.30	Vert(LL) -0.01 5 >999 360	MT20 244/190								
TCDL 15.0	Lumber DOL 1.25	BC 0.07	Vert(CT) -0.03 5 >999 240									
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.01 4 n/a n/a									
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MP	Wind(LL) 0.03 5 >999 240	Weight: 7 lb FT = 10%								

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (lb/size) 1=160/Mechanical, 3=77/Mechanical, 4=89/Mechanical Max Horz 3=95(LC 12) Max Uplift 1=-87(LC 12), 3=-1(LC 12), 4=-39(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-5-4 to 0-7-1, Interior(1) 0-7-1 to 0-11-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 1, 1 lb uplift at joint 3 and 39 lb uplift at joint 4.

DD STATE NO 68 DD STATE DD STATE SONAL Joaquin Velez PE No.6818 MITEK USA Ins S 68182

Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Plate Offsets (X,Y)	[2:0-0-0,0-1-10], [2:0-5-3,Edge]		1-0-0	
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.82 BC 0.07 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 5 >999 360 Vert(CT) 0.00 5 >999 240 Horz(CT) 0.00 2 n/a n/a Wind(LL) -0.00 5 >999 240	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE Left: 2x4 SP No.2

REACTIONS. (Ib/size) 3=-47/Mechanical, 2=441/0-3-0, 4=-130/Mechanical Max Horz 2=132(LC 12) Max Uplift 3=-47(LC 1), 2=-497(LC 12), 4=-130(LC 1) Max Grav 3=67(LC 12), 2=441(LC 1), 4=182(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 3, 497 lb uplift at joint 2 and 130 lb uplift at joint 4.

AQUIN No 68 BO STAN Joaquin Velez PE No.68182 MITEK USA, Inc. PL C 68182

Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

				-		1-4-8			1			
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.03	Vert(LL)	-0.00	6	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	-0.00	6	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	1	n/a	n/a		
BCDL	10.0	Code FBC2017/TP	12014	Matri	x-MP	Wind(LL)	0.00	6	>999	240	Weight: 4 lb	FT = 10%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-4-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 1=61/Mechanical, 2=39/Mechanical, 3=23/Mechanical Max Horz 2=31(LC 12) Max Uplift 1=-33(LC 12), 2=-17(LC 12), 3=-5(LC 12) Max Grav 1=61(LC 1), 2=39(LC 1), 3=26(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and
- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1, 17 lb uplift at joint 2 and 5 lb uplift at joint 3.

AOUIN CEN No 681 D. STUE D. STUE S.O.R.I.S Joaquin Velez PE No.6818: MITek IISA Inc. 68182 Joaquin Velez PE No.68182

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

Plate Offsets (X,Y)	[2:0-0-0,0-0-12]										
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TPI2	2-0-0 1.25 1.25 YES 2014	CSI. TC BC WB Matrix	0.82 0.27 0.00 -MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 -0.00	(loc) 7 7 2 7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 10%

TOP CHORD

BOT CHORD

1-0-0

Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=-78/Mechanical, 2=441/0-3-8, 4=-99/Mechanical Max Horz 2=133(LC 12) Max Uplift 3=-78(LC 1), 2=-517(LC 12), 4=-99(LC 1) Max Grav 3=119(LC 12), 2=441(LC 1), 4=150(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 0-11-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 3, 517 lb uplift at joint 2 and 99 lb uplift at joint 4.

AQUIN VEL No 68182 PD. STAFOF No RIDACINA SONAL ENGINE Joaquin Velez PE No.68182

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

					3-0-0				
					3-0-0	1			
Plate Offsets (X,Y)	[2:0-0-1,Edge]								
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL	1.25	TC 0.82	Vert(LL)	0.00 4-7 >999	360	MT20	244/190	
TCDI 15.0	Lumbor DOI	1 25	PC 0.25	Vort(CT)	0.00 7 >000	240			

BCDL	10.0	Code FBC2017/TF	PI2014	Matr	ix-MP	Wind(LL)	-0.02	4-7	>999	240	Weight: 14 lb	FT = 10%	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
TCDL	15.0	Lumber DOL	1.25	BC	0.25	Vert(CT)	0.00	7	>999	240			
TCLL	20.0	Plate Grip DOL	1.25	TC	0.82	Vert(LL)	0.00	4-7	>999	360	MT20	244/190	

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=52/Mechanical, 2=382/0-5-8, 4=5/Mechanical Max Horz 2=187(LC 12) Max Uplift 3=-33(LC 9), 2=-355(LC 12) Max Grav 3=57(LC 17), 2=382(LC 1), 4=52(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 3 and 355 lb uplift at joint 2.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.18 BC 0.14 WB 0.00 Matrix-MP	DEFL. in Vert(LL) -0.01 Vert(CT) -0.01 Horz(CT) -0.01 Wind(LL) 0.01	(loc) 5 5 1 5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 10%	
I UMBER-			BRACING-			-			

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x6 SP No.2

REACTIONS. (lb/size) 1=117/Mechanical, 3=-11/Mechanical, 4=-31/Mechanical, 2=447/0-5-8 Max Horz 2=150(LC 12) Max Uplift 1=-55(LC 12), 3=-30(LC 12), 4=-31(LC 1), 2=-122(LC 12) Max Grav 1=117(LC 1), 4=12(LC 12), 2=447(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-5-4 to 0-6-12, Interior(1) 0-6-12 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 1, 30 lb uplift at joint 3 , 31 lb uplift at joint 4 and 122 lb uplift at joint 2.

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

		⊢	1-11-8	2-3-8 3-0-0	-1
Plate Offsets (X,Y)	[2:0-0-0,0-1-0], [3:0-0-8,0-0-2]				
LOADING (psf) TCLL 20.0 TCDL 15.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.82 BC 0.36	DEFL. in Vert(LL) -0.00 Vert(CT) -0.01	(loc) l/defl L/d 7 >999 360 6 >999 240	PLATES GRIP MT20 244/190

LU	JM	BE	R-	

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

0.0

10.0

Left: 2x4 SP No.3

REACTIONS. (Ib/size) 4=42/Mechanical, 2=385/0-5-8, 5=22/Mechanical Max Horz 2=187(LC 12) Max Uplift 4=-20(LC 9), 2=-342(LC 12) Max Grav 4=47(LC 17), 2=385(LC 1), 5=46(LC 3)

Rep Stress Incr

Code FBC2017/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 2-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-MR

0.00

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 4 and 342 lb uplift at joint 2.

NO 68182 BOILD STATE OF NO RIDACINAL STATE OF HOMALENGINAL

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

0.01

-0.01

5

6 >999

n/a

n/a

240

Horz(CT)

Wind(LL)

Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

Weight: 16 lb

FT = 10%

								3-0-0				
Plate Off	sets (X,Y)	[2:0-1-9,0-3-4]						3-0-0				
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.25	TC	0.82	Vert(LL)	0.00	` 5-8́	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.15	Vert(CT)	-0.00	5-8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code FBC2017/T	PI2014	Matri	x-MP	Wind(LL)	-0.01	5-8	>999	240	Weight: 16 lb	FT = 10%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2SLIDERLeft 2x4 SP No.2 1-6-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 4=48/Mechanical, 2=382/0-3-0, 5=10/Mechanical

Max Horz 2=187(LC 12) Max Uplift 4=-40(LC 9), 2=-329(LC 12)

Max Grav 4=54(LC 17), 2=382(LC 1), 5=42(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-639/285

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-4-11, Interior(1) 0-4-11 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 4 and 329 lb uplift at joint 2.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

	٨л	D	-	D
U		D		n-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-4-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings Mechanical except (jt=length) 6=0-3-0.

(lb) - Max Horz 6=75(LC 12)

 $\begin{array}{ll} \mbox{Max Uplift} & \mbox{All uplift 100 lb or less at joint(s) 1, 3, 6, 5} \\ \mbox{Max Grav} & \mbox{All reactions 250 lb or less at joint(s) 1, 3, 6, 5} \end{array}$

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 3-3-12 zone; cantilever left
- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber
 - DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 6, 5.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

Plate Offsets (X Y)	[2:0-3-0 0-1-13]		3-0-0	
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 1.25	CSI. TC 0.82	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.00 4-7 >999 360 MT20 244/190	
TCDL 15.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	BC 0.28 WB 0.00 Matrix-MP	Vert(CT) 0.01 4-7 >999 240 Horz(CT) 0.01 2 n/a n/a Wind(LL) -0.02 4-7 >999 240 Weight: 15 lb FT = 10%	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x4 SP No.3

REACTIONS. (Ib/size) 3=56/Mechanical, 2=382/0-3-8, 4=2/Mechanical Max Horz 2=187(LC 12) Max Uplift 3=-40(LC 9), 2=-344(LC 12) Max Grav 3=61(LC 17), 2=382(LC 1), 4=50(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 2-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 2=344.

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

				H			5-0-0					
							5-0-0					
Plate Offs	sets (X,Y)	[2:0-0-5,Edge]										
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.82	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.32	Vert(CT)	-0.05	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2017/TP	12014	Matri	x-MP	Wind(LL)	0.04	4-7	>999	240	Weight: 20 lb	FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=130/Mechanical, 2=441/0-5-8, 4=48/Mechanical Max Horz 2=243(LC 12) Max Uplift 3=-98(LC 12), 2=-339(LC 12) Max Grav 3=132(LC 17), 2=441(LC 1), 4=86(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 2=339.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x6 SP No.2

REACTIONS.

All bearings Mechanical except (jt=length) 2=0-5-8.

(lb) - Max Horz 2=205(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 1, 3 except 2=-148(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 3, 4 except 2=490(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-5-4 to 0-6-12, Interior(1) 0-6-12 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3 except (jt=lb) 2 = 148

Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

		<u>⊢ 1-11</u> 1-11	I-8 2-3-8 I-8 0-4-0	<u>5-0-0</u> 2-8-8	I
Plate Offsets (X,Y)	[2:0-0-0,0-1-0], [3:0-0-8,0-0-14]				
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYES	CSI. TC 0.82 BC 0.41 WB 0.00	DEFL. in Vert(LL) -0.03 Vert(CT) -0.07 Horz(CT) 0.06	(loc) l/defl L/d 6 >999 360 6 >808 240 5 n/a n/a	PLATES GRIP MT20 244/190

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.10

6 >593 240

Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied or 5-0-0 oc purlins.

Weight: 23 lb

FT = 10%

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

10.0

Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=118/Mechanical, 2=447/0-5-8, 5=63/Mechanical Max Horz 2=243(LC 12) Max Uplift 4=-82(LC 12), 2=-327(LC 12) Max Grav 4=121(LC 17), 2=447(LC 1), 5=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code FBC2017/TPI2014

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MR

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=327.

PROTISS JOAQUIN S 68182 (innin) Joaquin Velez PE No.68182

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.25	TC 0.51	Vert(LL)	-0.03	3-6	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL 1.25	BC 0.46	Vert(CT)	-0.06	3-6	>896	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.01	2	n/a	n/a		
BCDL	10.0	Code FBC2017/TPI2014	Matrix-MP	Wind(LL)	0.06	3-6	>899	240	Weight: 15 lb	FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (Ib/size) 1=217/0-4-0, 2=148/Mechanical, 3=69/Mechanical Max Horz 1=134(LC 12) Max Uplift 1=-64(LC 12), 2=-128(LC 12), 3=-3(LC 12) Max Grav 1=217(LC 1), 2=148(LC 1), 3=94(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3 except (jt=lb) 2=128.

PD STALE OF

Structural wood sheathing directly applied or 4-10-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.59	Vert(LL)	-0.02	3-6	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.49	Vert(CT)	-0.07	3-6	>878	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
BCDL	10.0	Code FBC2017/TF	912014	Matri	x-MP	Wind(LL)	0.07	3-6	>890	240	Weight: 16 lb	FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=222/0-5-8, 2=155/Mechanical, 3=68/Mechanical Max Horz 1=137(LC 12) Max Uplift 1=-62(LC 12), 2=-137(LC 12) Max Grav 1=222(LC 1), 2=155(LC 1), 3=97(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 2=137.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

				1-11-8	2-3-8		5-0-0					
				1-11-8	0-4-0		2-8-8					
Plate Offs	sets (X,Y)	[2:0-0-12,0-0-12]										
LOADING	Gigen (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.54	Vert(LL)	-0.05	5	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.50	Vert(CT)	-0.12	5	>490	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.07	4	n/a	n/a		
BCDL	10.0	Code FBC2017/TF	PI2014	Matri	x-MR	Wind(LL)	0.14	5	>438	240	Weight: 18 lb	FT = 10%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 1=228/0-5-8, 3=140/Mechanical, 4=87/Mechanical Max Horz 1=137(LC 12) Max Uplift 1=-59(LC 12), 3=-111(LC 12), 4=-24(LC 12) Max Grav 1=228(LC 1), 3=140(LC 1), 4=99(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 3=111.

Scale = 1.18.5

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

			<u> </u>	1-11-8 1-11-8	2-3-8	3-6-0	+	5-0-0		4			
Plate Off	isets (X,Y)	[8:0-5-4,0-4-0]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.10	Vert(LL)	-0.00	9	>999	360	MT20	244/190	
TCDL	15.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	-0.01	9	>999	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	6	n/a	n/a			

Wind(LL)

0.01

9 >999

LUMBER-

BCDL

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

10.0

BRACING-TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 8-2-4 oc bracing: 7-8.

10-0-0 oc bracing: 8-10

240

Weight: 30 lb

FT = 10%

REACTIONS. (lb/size) 11=219/0-5-8, 4=50/Mechanical, 6=173/Mechanical Max Horz 11=127(LC 12) Max Uplift 11=-128(LC 8), 4=-46(LC 12), 6=-89(LC 9) Max Grav 11=219(LC 1), 4=50(LC 1), 6=176(LC 17)

Code FBC2017/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-457/391, 2-3=-273/178
- BOT CHORD 7-8=-528/553, 6-7=-248/288
- WEBS 1-8=-376/414, 2-7=-277/302, 3-6=-337/290

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MP

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6 except (it=lb) 11 = 128

Scale = 1.18.2

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

		<u>2-4-8</u> 2-4-8	2 ₁ 6-0 0-1-8	<u>5-1-8</u> 2-7-8			
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. TC 0.25 BC 0.26 WB 0.13 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/defl 0.00 5-6 >999 0.00 5-6 >999 0.01 3 n/a -0.01 5-6 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-1-8 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 3=63/Mechanical, 6=619/0-3-0, 5=-141/Mechanical Max Horz 6=115(LC 12) Max Uplift 3=-55(LC 12), 6=-387(LC 12), 5=-141(LC 1) Max Grav 3=63(LC 1), 6=619(LC 1), 5=96(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-2=-698/427 BOT CHORD 1-6=-362/688, 5-6=-362/507

WEBS 2-6=-518/765, 2-5=-549/392

NOTES

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 6=387.5=141.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 86 lb down and 89 lb up at 0-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-70, 4-7=-20 Concentrated Loads (lb) Vert: 1=-84(B)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

TIBBETTS LUMBER CO LLC. LUTZ, FL

			<u>1-11-8</u> 1-11-8	2-3-8	5- 2-	0-0 8-8					
Plate Offsets (X,Y)	[6:0-5-4,0-4-0]										
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/TI	2-0-0 1.25 1.25 YES Pl2014	CSI. TC BC WB Matri	0.19 0.14 0.07 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 -0.01 0.01	(loc) 5-6 5-6 5 7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 10%

	18/	DE	D
LU	ואו נ	DD	-71

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2

BRACING-TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 10-0-0 oc bracing: 6-8

REACTIONS. (lb/size) 3=91/Mechanical, 9=220/0-5-8, 5=131/Mechanical Max Horz 9=-146(LC 10) Max Uplift 3=-93(LC 9), 9=-162(LC 8), 5=-76(LC 9) Max Grav 3=91(LC 1), 9=220(LC 1), 5=153(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-286/320

BOT CHORD 5-6=-330/296

WEBS 1-6=-285/261, 2-5=-338/378

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5 except (jt=lb) 9=162.

Scale = 1.19.4

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

				H			5-0-0					
Plate Offs	sets (X Y)	[2.0-0-0 0-0-8]					5-0-0					
- 1010 0110	,,,,,,											
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	тс	0.82	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.33	Vert(CT)	-0.05	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code FBC2017/TF	912014	Matri	x-MP	Wind(LL)	0.04	4-7	>999	240	Weight: 20 lb	FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=133/Mechanical, 2=441/0-5-8, 4=44/Mechanical Max Horz 2=243(LC 12) Max Uplift 3=-108(LC 12), 2=-330(LC 12) Max Grav 3=136(LC 17), 2=441(LC 1), 4=87(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber
- DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=108, 2=330.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

			7-0-0 7-0-0	—
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.98 BC 0.62 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.09 4-7 >912 360 Vert(CT) -0.23 4-7 >366 240 Horz(CT) 0.01 3 n/a n/a Wind(LL) 0.16 4-7 >515 240	PLATES GRIP MT20 244/190 Weight: 26 lb FT = 10%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=199/Mechanical, 2=519/0-5-8, 4=82/Mechanical Max Horz 2=298(LC 12) Max Uplift 3=-162(LC 12), 2=-348(LC 12) Max Grav 3=200(LC 17), 2=519(LC 1), 4=128(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-7-1, Interior(1) 0-7-1 to 6-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=162, 2=348.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

				<u> 1-0-0</u> 1-0-0	1-2-12 0-2-12		7-	0-0 9-4					
Plate Offs	ets (X,Y)	[2:0-1-9,0-0-2], [2:0-0-8,1	-1-9]	1-0-0	0-2-12		0-	5-4					
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	тс	0.82	Vert(LL)	-0.05	4-9	>999	360	MT20	244/190	
TCDL	15.0	Lumber DOL	1.25	BC	0.47	Vert(CT)	-0.09	4-9	>950	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.04	3	n/a	n/a			

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

-0.09

4-9

>941

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 3-8-1 oc purlins.

Weight: 28 lb

FT = 10%

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE Left: 2x6 SP No.2

10.0

REACTIONS. (lb/size) 3=147/Mechanical, 4=46/Mechanical, 2=606/0-5-8 Max Horz 2=298(LC 12) Max Uplift 3=-120(LC 12), 2=-407(LC 12) Max Grav 3=152(LC 17), 4=98(LC 3), 2=606(LC 1)

Rep Stress Incr

Code FBC2017/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 6-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MP

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=120, 2=407.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

				1-1 1-1	1-8 2 1-8 C	2-3-8)-4-0			7-0-	0 8			
Plate Offsets	s (X,Y)	[2:0-0-0,0-1-0], [3:0-4-12,	Edge]										
LOADING ((psf)	SPACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.25	TC	0.82		Vert(LL)	-0.10	3-5	>876	360	MT20	244/190
TCDL 1	15.0	Lumber DOL	1.25	BC	0.76		Vert(CT)	-0.25	3-5	>327	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00		Horz(CT)	0.15	5	n/a	n/a		
BCDL 1	10.0	Code FBC2017/TF	912014	Matri	x-MR		Wind(LL)	0.26	6	>324	240	Weight: 29 lb	FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 4=187/Mechanical, 2=525/0-5-8, 5=96/Mechanical Max Horz 2=298(LC 12)

Max Uplift 4=-146(LC 12), 2=-337(LC 12) Max Grav 4=188(LC 17), 2=525(LC 1), 5=129(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-9=-251/0

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 6-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=146, 2=337.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

Plate Off	sets (X,Y) [[2:0-0-8,0-1-4]				7	-0-0					
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.42	Vert(LL)	-0.09	4-7	>917	360	MT20	244/190
FCDL	15.0	Lumber DOL	1.25	BC	0.57	Vert(CT)	-0.21	4-7	>394	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.03	3	n/a	n/a		
BCDL	10.0	Code FBC2017/T	PI2014	Matri	x-MP	Wind(LL)	0.13	4-7	>639	240	Weight: 27 lb	FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP M 31 BOT CHORD 2x4 SP No.2 WEDGE Loft: 2x4 SP No.2

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=207/Mechanical, 2=519/0-3-8, 4=74/Mechanical Max Horz 2=298(LC 12) Max Uplift 3=-173(LC 12), 2=-341(LC 12) Max Grav 3=208(LC 17), 2=519(LC 1), 4=125(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) -2-6-0 to 0-6-0, Interior(1) 0-6-0 to 6-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=173, 2=341.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

										-1			
						1			4-1	-7		1	
Plate Offse	Plate Offsets (X,Y) [2:0-2-4,Edge]												
LOADING	i (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.24	Vert(LL)	-0.09	4-7	>560	240	MT20	244/190	
TCDL	15.0	Lumber DOL	1.25	BC	0.27	Vert(CT)	0.05	4-7	>898	240			
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			

11	IM	RF	R	-	

BCDL

TOP CHORD	2x4 SP M 31
BOT CHORD	2x4 SP M 31
OTHERS	2x4 SP M 31
LBR SCAB	1-3 2x4 SP M 31 one side

10.0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-1-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 30 lb

FT = 10%

REACTIONS. (Ib/size) 3=-0/Mechanical, 2=360/0-7-6, 4=-30/Mechanical Max Horz 2=185(LC 24) Max Uplift 3=-78(LC 17), 2=-512(LC 8), 4=-73(LC 17) Max Grav 3=165(LC 25), 2=636(LC 28), 4=154(LC 24)

Code FBC2017/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) (++)Attached 8-1-11 scab 1 to 3, front face(s) 2x4 SP M 31 with 1 row(s) of 10d (0.131"x3") nails spaced 9" o.c.except : starting at 2-8-10 from end at joint 1, nail 1 row(s) at 7" o.c. for 3-6-15.

Matrix-MP

- 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=512.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 199 lb down and 167 lb up at 1-6-1, and 199 lb down and 167 lb up at 1-6-1 on top chord, and 165 lb down and 137 lb up at 1-6-1, and 165 lb down and 137 lb

- up at 1-6-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-3=-70, 4-5=-20 Concentrated Loads (lb)

Vert: 8=140(F=70, B=70) 9=142(F=71, B=71)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON MICLODED MITER REPERIENCE PAGE mit-14/3 at 900, 1002/015 BEPORE 052. Design valid for use only with MITeR works connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

									4-1-7			1	
									4-1-7				
Plate Offsets (X,Y) [2:0-0-5,0-0-2], [2:0-7-14,0-0-4]													
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.53	Vert(LL)	-0.07	4-7	>718	240	MT20	244/190	
TCDL	15.0	Lumber DOL	1.25	BC	0.46	Vert(CT)	0.05	4-7	>999	240			

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.02

2

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-1-7 oc purlins.

Weight: 27 lb

FT = 10%

BCDL	10.0

BCLL

LUMBER-TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEDGE

0.0

Left: 2x4 SP No.2

REACTIONS. (lb/size) 3=-16/Mechanical, 2=360/0-3-14, 4=-14/Mechanical Max Horz 2=185(LC 24) Max Uplift 3=-105(LC 17), 2=-497(LC 8), 4=-46(LC 17) Max Grav 3=171(LC 25), 2=599(LC 28), 4=102(LC 24)

Rep Stress Incr

Code FBC2017/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II: Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WB 0.00

Matrix-MP

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NO

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=105, 2=497.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 149 lb down and 146 lb up at 1-6-0, and 149 lb down and 146 lb up at 1-6-1 on top chord, and 174 lb down and 159 lb up at 1-6-0, and 174 lb down and 159 lb up at 1-6-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 - Uniform Loads (plf)

Vert: 1-3=-70, 4-5=-20 Concentrated Loads (lb)

Vert: 8=123(F=62, B=62) 9=159(F=79, B=79)

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

1-6-1, 208 lb down and 177 lb up at 1-6-1, and 121 lb down and 34 lb up at 4-4-0, and 121 lb down and 34 lb up at 4-4-0 nt op chord, and 136 lb down and 127 lb up at 1-6-1, 136 lb down and 127 lb up at 1-6-1, and 38 lb down and 0 lb up at 4-4-0, and 38 lb down and 0 lb up at 4-4-0. The design/selection of such connection device(s) is the responsibility of others.
7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-7=-70, 2-10=-20, 5-8=-20 Concentrated Loads (lb) Vert: 3=150(F=75, B=75) 12=132(F=66, B=66) 14=1(F=0, B=0)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

	3-3-10 3-3-10	3 ₁ 5-12 0-2-2	7-1-8 3-7-12	
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNOCodeFBC2017/TPI2014	CSI.DEFL.TC0.46BC0.31Vert(LL)WB0.22Matrix-MP	in (loc) l/defl L/d -0.02 5-6 >999 240 0.02 5-6 >999 180) -0.01 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 28 lb FT = 10%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 5-9-8 oc bracing.

REACTIONS. (lb/size) 3=57/Mechanical, 6=945/0-4-4, 5=-243/Mechanical Max Horz 6=120(LC 20) Max Uplift 3=-43(LC 4), 6=-665(LC 4), 5=-265(LC 16) Max Grav 3=60(LC 28), 6=945(LC 1), 5=194(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-2=-639/996 BOT CHORD 1-6=-929/637, 5-6=-929/517

WEBS 2-6=-749/470, 2-5=-539/969

NOTES

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 6=665.5=265.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 41 lb up at 0-0-0, 84 lb down and 41 lb up at 0-0-0, 27 lb down and 26 lb up at 2-0-6, 27 lb down and 26 lb up at 2-0-6, and 83 lb down and 109 lb up at 4-10-6, and 83 lb down and 109 lb up at 4-10-6 on top chord, and 7 lb down and 12 lb up at 2-0-6, 7 lb down and 12 lb up at 2-0-6, and 19 lb down and 65 lb up at 4-10-6, and 19 lb down and 65 lb up at 4-10-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-70, 4-7=-20 Concentrated Loads (lb) Vert: 1=-168(F=-84, B=-84) 11=98(F=49, B=49) 12=-14(F=-7, B=-7) 13=-38(F=-19, B=-19)

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrNOCodeFBC2017/TPI2014	CSI. TC 0.49 BC 0.49 WB 0.18 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.05 7-10 0.03 7-10 0.01 5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.2		BRACING- TOP CHORI BOT CHORI	D Structur D Rigid ce	al wood sh iling directl	eathing dire y applied o	ectly applied or 6-0-0 r 6-0-0 oc bracing.	oc purlins.
REACTIONS. (Ib/size Max He Max Uj Max G	e) 4=135/Mechanical, 2=393/0-7-6, 5=3 orz 2=241(LC 24) plift 4=-108(LC 8), 2=-501(LC 8), 5=-36(rav 4=149(LC 17), 2=759(LC 28), 5=294	37/Mechanical _C 17) (LC 25)						
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-7=- WEBS 3-7=-	Comp./Max. Ten All forces 250 (lb) or 935/250 229/772, 6-7=-229/772 67/307, 3-6=-829/246	ess except when shown.						
NOTES- 1) Wind: ASCE 7-10; V II; Exp D; Encl., GCp DOL=1.60 plate grip	ult=145mph (3-second gust) Vasd=112n bi=0.18; MWFRS (directional); cantilever DOL=1.60	nph; TCDL=4.2psf; BCDL left and right exposed ; er	.=6.0psf; h=25ft; B- nd vertical left and	=45ft; L=24ft; e right exposed;	ave=4ft; Ca Lumber	ıt.		
 2) This truss has been 3) * This truss has been will fit between the b 4) Refer to girder(s) for 5) Provide mechanical 4–108, 2–501 	designed for a 10.0 pst bottom chord live n designed for a live load of 20.0psf on th ottom chord and any other members. truss to truss connections. connection (by others) of truss to bearing	Pload nonconcurrent with the bottom chord in all area plate capable of withsta	any other live load as where a rectang nding 100 lb uplift :	is. le 3-6-0 tall by at joint(s) 5 exc	2-0-0 wide		A CALLER CONTRACTOR CONTRACT	JIN VELE
 (a) Hanger(s) or other ca (b) Hanger(s) or other ca (c) 1-6-1, 205 lb down a (c) and 136 lb down ar (c) down and 10 lb up ar (c) AD CASE(6) 	onnection device(s) shall be provided su ind 177 lb up at 1-6-1, and 47 lb down a ind 127 lb up at 1-6-1, 136 lb down and 1 t 4-4-0 on bottom chord. The design/se Su section loads applied to the face of th	ficient to support concent nd 51 lb up at 4-4-0, and 27 lb up at 1-6-1, and 45 ection of such connectior e truss are noted as front	trated load(s) 205 47 lb down and 51 5 lb down and 10 lb n device(s) is the re	b down and 17 b up at 4-4-0 up at 4-4-0, a esponsibility of	77 lb up at) on top cho and 45 lb others.	ord	No *	
								UP H
1) Dead + Roof Live (ba Uniform Loads (plf) Vert: 1-4=-7	lard alanced): Lumber Increase=1.25, Plate Ii (0, 5-8=-20	ncrease=1.25					III SSIC	NAL ENGINI
Vert: 11=15	0(F=75, B=75) 13=132(F=66, B=66) 14=	20(F=10, B=10)					Joaquin Velez P MiTek USA, Inc. 6904 Parke East Date:	E No.68182 .FL Cert 6634 t Blvd. Tampa FL 33610

April 17,2019

	ł	<u> </u>			9-9-5 4-7-10	
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2017/TPI2014	CSI. DEFL. TC 0.24 Vert(LL) BC 0.59 Vert(CT WB 0.40 Horz(CT Matrix-MS	in (loc) -0.08 8-10) -0.08 8-10) 0.01 7) l/defl L/d) >999 240) >999 180 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 64 lb FT = 1	0%
LUMBER-		BRACIN	G-			

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD	2x4 SP DSS
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.2
OTHERS	2x4 SP DSS
LBR SCAB	1-3 2x4 SP DSS one side

REACTIONS. (lb/size) 5=165/Mechanical, 2=512/0-7-6, 7=288/Mechanical Max Horz 2=296(LC 24) Max Uplift 5=-141(LC 8), 2=-553(LC 8), 7=-109(LC 5) Max Grav 5=165(LC 1), 2=961(LC 28), 7=401(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-986/252

BOT CHORD 2-8=-335/933, 7-8=-335/933

WEBS 4-8=-57/439, 4-7=-991/356

NOTES-

- 2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=141 2=553 7=109
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 199 lb down and 167 lb up at 1-6-1, 199 lb down and 167 lb up at 1-6-1, 45 lb down and 44 lb up at 4-4-0, 45 lb down and 44 lb up at 4-4-0, and 99 lb down and 151 lb up at 7-1-15, and 91 lb down and 120 lb up at 7-1-15 on top chord, and 165 lb down and 137 lb up at 1-6-1, 165 lb down and 137 lb up at 1-6-1, 48 lb down and 8 lb up at 4-4-0, 48 lb down and 8 lb up at 4-4-0, and 41 lb down and 31 lb up at 7-1-15, and 47 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-70, 2-6=-20

Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

^{1) (++)}Attached 8-0-0 scab 1 to 3, front face(s) 2x4 SP DSS with 1 row(s) of 10d (0.131"x3") nails spaced 9" o.c.except : starting at 2-8-10 from end at joint 1, nail 1 row(s) at 7" o.c. for 5-2-13.
Job	Truss	Truss Type	Qty	Ply	348 Shore Drive E.
			_		T16796631
413220	К7	Diagonal Hip Girder	2	1	
					Job Reference (optional)
TIBBETTS LUMBER CO LLC	C, LUTZ, FL		8	.240 s Dec	c 6 2018 MiTek Industries, Inc. Tue Apr 16 12:12:32 2019 Page 2
		ID:LTHF4I	EcV9tayzx	n_hS4Ofo	znULZ-M7Zh6EVv3CfAJHU8VnmcLDE5HKvSCY1OhJTB?6zQ8jz

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 9=140(F=70, B=70) 10=142(F=71, B=71) 13=-80(F=-49, B=-31) 14=16(F=8, B=8) 15=-60(F=-40, B=-20)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.25 TCDL 15.0 Lumber DOL 1.25 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code FBC2017/TPI2014 10	CSI. TC 0.65 BC 0.29 WB 0.24 Matrix-MS	DEFL. in (loc) I/defl L/ Vert(LL) -0.02 8 >999 36 Vert(CT) -0.03 8 >999 24 Horz(CT) -0.01 4 n/a n/ Wind(LL) 0.03 8 >999 24	d PLATES GRIP 0 MT20 244/190 0 a 0 Weight: 65 lb FT = 10%
LUMBER- TOP CHORD 2x6 SP DSS BOT CHORD 2x6 SP DSS WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2		BRACING-TOP CHORDStructural wood sheatBOT CHORDRigid ceiling directly aJOINTS1 Brace at Jt(s): 7	thing directly applied or 5-4-13 oc purlins. applied or 10-0-0 oc bracing.
REACTIONS. (lb/size) 4=175/Mechanical, 2=1076/C Max Horz 2=301(LC 8) Max Uplift 4=-147(LC 8), 2=-802(LC 8), Max Grav 4=175(LC 1), 2=1097(LC 28)	7-12, 6=-9/Mechanical 3=-103(LC 6) 6=224(LC 24)		
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 TOP CHORD 2-3=-685/455 BOT CHORD 2-7=-487/579, 6-7=-487/579 WEBS 3-7=-224/316, 3-6=-612/514	lb) or less except when showr	n.	
 NOTES- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vas II; Exp D; Encl., GCpi=0.18; MWFRS (directional); can DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom cf 3) * This truss has been designed for a live load of 20.0p will fit between the bottom chord and any other member 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to 4=147, 2=802, 6=103. 6) Hanger(s) or other connection device(s) shall be prov -3-6-7, 49 lb down and 19 lb up at 1-6-1, 204 lb dowr and 62 lb down and 106 lb up at 7-1-15, and 91 lb do 1-6-1, 60 lb up at 4-4-0, 48 lb down and 8 lb up at 4- The design/selection of such connection device(s) is a 7) In the LOAD CASE(S) section, loads applied to the fat 	=112mph; TCDL=4.2psf; BCD ilever left and right exposed ; ord live load nonconcurrent wit if on the bottom chord in all are rs. bearing plate capable of withst ded sufficient to support conce and 167 lb up at 1-6-1, 79 lb u vn and 120 lb up at 7-115 on -0, and 11 lb down at 7-115, ie responsibility of others. e of the truss are noted as from	DL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. end vertical left and right exposed; Lumber th any other live loads. eas where a rectangle 3-6-0 tall by 2-0-0 wide tanding 100 lb uplift at joint(s) except (jt=lb) entrated load(s) 186 lb down and 83 lb up at up at 4-4-0, 45 lb down and 44 lb up at 4-4-0, top chord, and 65 lb down and 63 lb up at and 47 lb down at 7-1-15 on bottom chord. nt (F) or back (B).	D STAFA OF
LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Uniform Loads (plf) Vert: 1-4=-70, 5-8=-20 Concentrated Loads (lb) Vert: 1=-186(F) 9=69(F=-1, B=70) 10=-65(F)	Plate Increase=1.25	42, B=8) 16=-21(F=-1, B=-20)	Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			2-7-12	3-2	-3 6-	0-12				9-9-5	
		1	2-7-12	0-6	-7 2-	10-9		1		3-8-9	1
Plate Offsets (X,Y)	[2:0-3-7,Edge], [3:0-0-0,0-2-	12], [4:0-0-0,	,0-1-13], [5:0)-2-12,0-0-0],	[12:0-8-0,0-2-8]						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC	0.43	Vert(LL)	-0.19	11	>604	240	MT20	244/190
TCDL 15.0	Lumber DOL	1.25	BC	0.22	Vert(CT)	-0.23	11	>497	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB	0.29	Horz(CT)	0.08	8	n/a	n/a		
BCDL 10.0	Code FBC2017/TPI2	014	Matriz	x-S						Weight: 64 lb	FT = 10%
LUMBER-	·				BRACING-						
TOP CHORD 2x6 S	P DSS				TOP CHOR	D	Structur	al wood	sheathing o	directly applied or 5-9-8	oc purlins.
BOT CHORD 2x6 S	PDSS				BOT CHOR	ו נ	Riaid ce	elina dire	ctiv applied	d or 10-0-0 oc bracing.	Except:

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 2-12.

REACTIONS. (lb/size) 7=127/Mechanical, 2=535/0-7-6, 8=285/Mechanical Max Horz 2=295(LC 8) Max Uplift 7=-98(LC 8), 2=-550(LC 8), 8=-78(LC 5)

Max Grav 7=130(LC 17), 2=959(LC 28), 8=401(LC 28)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2025/637, 3-4=-559/76, 5-6=-1245/259

2x4 SP No.2

BOT CHORD 2-12=-665/1757, 5-10=-333/1215, 9-10=-333/1215

NOTES-

WEBS

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8 except (jt=lb) 2=550.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 208 lb down and 177 lb up at 1-6-1, 208 lb down and 177 lb up at 1-6-1, 121 lb down and 34 lb up at 4-4-0, 121 lb down and 34 lb up at 4-4-0, and 87 lb down and 106 lb up at 7-1-15, and 87 lb down and 106 lb up at 7-1-15 on top chord, and 136 lb down and 127 lb up at 1-6-1, 136 lb down and 127 lb up at 1-6-1, 38 lb down and 0 lb up at 4-4-0, 38 lb down and 0 lb up at 4-4-0, and 45 lb down at 7-1-15, and 45 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-7=-70, 2-11=-20, 5-8=-20

Concentrated Loads (lb)

Vert: 3=150(F=75, B=75) 14=-39(F=-19, B=-19) 15=132(F=66, B=66) 16=1(F=0, B=0) 17=-70(F=-35, B=-35)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WEBS 4-12=-568/1350, 6-10=0/339, 6-9=-1268/347, 3-12=-2059/780

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6904 Parke East Blvd. Tampa, FL 36610

MiTek

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 11=105, 12=130, 9=105, 8=130.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters shown, and is for an individual point point, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			<u>14-0-7</u> 14-0-7	
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.08 BC 0.04 WB 0.04 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 53 lb FT = 10%
LUMBER- TOP CHORD 2x4 SF	P No.2		BRACING- TOP CHORD Structural wood sheathing d	irectly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS

REACTIONS. All bearings 14-0-7.

Max Horz 1=-90(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 11=-104(LC 12), 12=-133(LC 12), 9=-104(LC 12), 8=-133(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-8-4 to 3-8-4, Interior(1) 3-8-4 to 7-0-4, Exterior(2) 7-0-4 to 10-0-4, Interior(1) 10-0-4 to 13-4-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 11=104, 12=133, 9=104, 8=133.

AQUIN CEN No 681 D. STATE D. STATE S. O. R. I. S. O. R. I. S. S. O. N. AL Joaquin Velez PE No.6818: MITek IISA INCO JOAQUIN VE 68182

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

0-0 <u>-9</u> 0-0-9			19-4-10 19-4-1						
LOADING (psf) TCLL 20.0 TCDL 15.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Boo Strass Laze	CSI. TC 0.34 BC 0.20	DEFL. Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCDL 10.0	Code FBC2017/TPI2014	Matrix-S		0.00	Э	n/a	n/a	Weight: 70 lb	FT = 10%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-3-8.

Max Horz 1=-127(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-296(LC 12), 6=-296(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=252(LC 1), 9=499(LC 21), 6=499(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-380/384, 4-6=-380/384

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-8-4 to 3-8-4, Interior(1) 3-8-4 to 9-8-5, Exterior(2) 9-8-5 to 12-8-5, Interior(1) 12-8-5 to 18-8-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=296, 6=296.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. April 17,2019

6904 Parke East Blvd. Tampa, FL 36610

MiTek

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Date

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Bivd. Tampa FL 33610

April 17,2019

Date

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Uplift 1=-79(LC 12), 3=-79(LC 12), 4=-85(LC 12)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-194/250

AQUIN AQUIN ICEN No 681 BO SHOE SHOE NO R IS SONAL Joaquin Velez PE No.6818: MITek IISA INCO JOAQUIN VE 68182 Joaquin Velez PE No.68182

2x4 💋

2x4 🗢

	2:0-2-0 Edgel		<u>3-4-1</u> 3-4-1	<u>3-4-10</u> 0-0-9
LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.05 BC 0.05 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190
JCDL 10.0 JUMBER-	Code FBC2017/TPI2014	Matrix-P	BRACING- TOP CHORD Structural wood sheathing dir	Weight: 8 lb FT = 10%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 1=90/3-3-8, 3=90/3-3-8 Max Horz 1=14(LC 11) Max Uplift 1=-41(LC 12), 3=-41(LC 12)

L				16-6-0					
1				16-6-0					
LOADING (TCLL 2 TCDL 1 BCLL BCDL 1	(psf) 20.0 15.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2017/TPI2014	CSI. TC 0.25 BC 0.15 WB 0.06 Matrix-R	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.00	n (loc) a - a - D 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHOR BOT CHOR WEBS OTHERS	D 2x4 SP D 2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.2 No.2 No.2 No.2		BRACING- TOP CHORD BOT CHORD	Structur except o Rigid ce	al wood she and vertical ailing directly	eathing direc s. y applied or	tly applied or 6-0-0 ot 10-0-0 ot 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 16-6-0.

(lb) -Max Horz 10=-143(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) except 10=-105(LC 12), 6=-105(LC 12), 9=-255(LC 12), 7=-255(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 10, 6, 8 except 9=427(LC 17), 7=424(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-216/291, 3-4=-216/283

WEBS 2-9=-331/348, 4-7=-331/347

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 8-3-0, Exterior(2) 8-3-0 to 11-3-0, Interior(1) 11-3-0 to 16-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 10, 105 lb uplift at joint 6, 255 lb uplift at joint 9 and 255 lb uplift at joint 7.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) ICLL 20.0 ICDL 15.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYES	CSI. TC 0.64 BC 0.26 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/190 Vert(CT) n/a - n/a 999 MT20 244/190
BCDL 10.0	Code FBC2017/TPI2014	Matrix-P	Weight: 18 lb FT = 105

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

REACTIONS. (lb/size) 1=206/5-4-4, 3=206/5-4-4 Max Horz 1=155(LC 11)

Max Uplift 1=-86(LC 12), 3=-98(LC 12)

Max Grav 1=206(LC 1), 3=210(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-211/324

NOTES-

 Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-8-4 to 3-8-4, Interior(1) 3-8-4 to 5-3-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 1 and 98 lb uplift at joint 3.

No 68182 B. STAKE OF NO RIDAGINI Joaquin Velez PE No.68182

Structural wood sheathing directly applied or 5-4-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCodeFBC2017/TPI2014	CSI. TC 0.19 BC 0.07 WB 0.00 Matrix-P	DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0	in (loc) l/d /a - r /a - r 00 3 r	efl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	BRACING- TOP CHORD BOT CHORD	Structural we except end ve Rigid ceiling	ood sheathing di verticals. directly applied o	rectly applied or 3-4-1: or 10-0-0 oc bracing.	3 oc purlins,		

REACTIONS. (lb/size) 1=116/3-4-4, 3=116/3-4-4 Max Horz 1=87(LC 9) Max Uplift 1=-48(LC 12), 3=-55(LC 12) Max Grav 1=116(LC 1), 3=118(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat.
- II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and
- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 17,2019

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	тс	0.79	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	15.0	Lumber DOL	1.25	BC	0.33	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2017/T	PI2014	Matri	x-P						Weight: 21 lb	FT = 10%

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (lb/size) 1=230/5-10-12, 3=230/5-10-12 Max Horz 1=173(LC 9) Max Uplift 1=-96(LC 12), 3=-110(LC 12) Max Grav 1=230(LC 1), 3=235(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-234/354

NOTES-

1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) 0-8-4 to 3-8-4, Interior(1) 3-8-4 to 5-9-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 3=110.

P BOTTIC JOAQUIN S 68182 ON/ (IIIIIII) Joaquin Velez PE No.68182

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 15.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.28 BC 0.11 WB 0.00 Matrix-P	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) a - a - 0 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 10%
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI	P No.2 P No.2		BRACING- TOP CHORD	Structu	ral wood end verti	sheathing dir	rectly applied or 3-11-	5 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WEBS

- 1) Wind: ASCE 7-10; Vult=145mph (3-second gust) Vasd=112mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat.
- II; Exp D; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and
- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

April 17,2019

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (lb/size) 1=140/3-10-12, 3=140/3-10-12 Max Horz 1=105(LC 9) Max Uplift 1=-58(LC 12), 3=-67(LC 12) Max Grav 1=140(LC 1), 3=143(LC 17)

