MASTER PLAN WINCHESTER

CONTRACTOR COPY

Ultimate Design Wind Speed ______ mph

Risk Category I II III IV

Florida Building Code _____ Edition (20 _____)

GENERAL NOTES:

THE FOLLOWING TECHNICAL CODES SHALL APPLY: 2017 FLORIDA BUILDING CODE, PLUMBING, MECHANICAL, FUEL GAS, ENERGY EFFICIENCY, ACCESSIBILITY, AND NATIONAL ELECTRICAL CODES

- TANK TYPE WATER CLOSET VOLUME
- 2. WALL MOUNT WATER CLOSET VOLUME 3.5 GALLONS
- 3. WATER FLOW RATE.

PUBLIC FACILITIES 0.5 G.P.M. PRIVATE FACILITIES 2.2 G.P.M. 2.5 G.P.M. SHOWER HEADS

VTR LOCATIONS ARE APPROXIMATE AND MAY CHANGE DUE TO JOBSITE

THE FOLLOWING SHALL COMPLY WITH THE 2017 FBC.

- PORCHES AND BALCONIES
- ☐ HANDRAILS
- ☐ GUARDRAILS
- ☐ CHIMNEY & FIREPLACE
- ☐ EGRESS WINDOWS
- 4. ALL OPENINGS SHALL COMPLY WITH 2017 FBC WIND LOADS AS STATED BELOW, ATTACHMENTS OF WINDOWS, DOORS, SLIDING GLASS DOORS AND O.H. GARAGE DOORS ARE DELEGATED THE MANUFACTURER OF THESE ITEMS. THE MANUFACTURER OF THESE ITEMS
 SHALL SUBMIT ATTACHMENTS TO ENGINEER OF RECORD FOR REVIEW PRIOR TO INSTALLATION. SEE ATTACHED SPECIFICATION SHEETS FOR MANUFACTURERS DESIGN CRITERIA AND INSTALLATION METHODS FOR WINDOWS, DOORS, SLIDING GLASS DOORS, OVERHEAD GARAGE DOORS, AND ROOFING.
- 5. ALL DOORS INTERIOR & EXTERIOR ARE 8' 0" UNLESS OTHERWISE NOTED ALL SHOWER ENCLOSURES TO BE TEMPERED GLASS
- 6. ALL WINDOWS WITHIN 24" OF DOORS (INTERIOR & EXTERIOR) AND WITHIN 18" OFF FLR TO BE TEMPERED GLASS.

ROBBIAN SAT ROBBIAN SAT CONNERWOOD NEW PORT NICHEY. (727) 848-2259 MALL-al@cobinnodesi

A B

INDEX OF DRAWINGS

TITLE SHEET

11

SOFTPETURAL DESIGN ROPTWARDS

COVER SHEET STRUCTURAL ENGINEER NOTES STRUCTURAL ENGINEER NOTES STRUCTURAL ENGINEER NOTES WIND LOAD DESIGN DATA SLAB PLAN FLOOR PLAN NOTES **DIMENSION PLAN EXTERIOR ELEVATIONS ROOF PLAN** TRUSS PLAN 6A **ELECTRICAL PLAN** CONSTRUCTION DETAILS CONSTRUCTION DETAILS TYPICAL WALL SECTIONS

TYPICAL FOOTING DETAILS

TYPICAL INTERIOR DETAILS

WINDOW INSTALLATION NOTES:

DUE TO SPACE LIMITATIONS IN THIS 11"X 17" PLAN FORMAT, AND TO ELIMINATE CLUTTER AND TEXT READABILITY ISSUES, SOME DETAILS AND NOTATIONS MAY OR MAY NOT BE LOCATED ON THE SAME SHEETS OR IN THE SAME LOCATIONS AS PROVIDED FOR BY OTHER CONTRACTORS OR ARCHITECTS. IT WOULD BE IN YOUR BEST INTREST TO REVIEW THESE PLANS AND LOCATE THE APPROPORIATE INFORMATION REQUIRED TO COMPLETE YOUR SPECIFIC PORTION OF THE JOB BEFORE BEGINNING CONSTRUCTION.

NOTICE TO SUBCONTRACTORS:

IT IS THE INTENT OF THIS DESIGNER THAT THESE PLANS ARE ACCURATE AND ARE CLEAR ENOUGH FOR THE LICENSED PROFESSIONAL TO CONSTRUCT THIS PROJECT.
IN THE EVENT THAT SOMETHING IS UNCLEAR OR NEEDS CLARIFICATION .. STOP. AND CALL THE DESIGNER LISTED IN THIS TITLE PAGE. IT IS THE RESPONSIBILITY OF THE LICENSED PROFESSIONAL THAT IS CONSTRUCTING THIS PROJECT TO FULLY REVIEW THESE DOCUMENTS BEFORE CONSTRUCTION BEGINS AND ANY AND ALL CORRECTIONS, IF NEEDED, TO BE MADE REFORE ANY WORK IS DONE.

NOTICE TO BUILDER

. WINDOWS MUST BE FASTENED INTO STRUCTURAL MEMBERS PER MFG'S. DETAIL REQUIREMENTS PER DESIGN CRITERIA NOTED ON THESE DRAWINGS.

WINDOWS ARE IMPACT RESISTANT TYPE. NO STORM SHUTTERS OR PANELS ARE REQUIRED.

ROOF, WALLS AND WINDOW FASTENINGS MUST BE ENGINEERED AND SPECIFIED FOR CUMULATIVE INTERNAL PRESSURE AND EXTERNAL NEGATIVE (SUCTION) PRESSURES WHICH VARIES ACCORDING TO AREAS AS NOTED IN THE DESIGN CRITERIA AS NOTED ON PAGE S4.

S 工 工 工 工 工 工

DEEB FAMILY HOMES, LTD. 9400 RIVER CROSSING BLD. NEW PORT RICHEY, FL. 34655 727-376-6831

BUILDING 25
RESERVE AT HUNTERS RIDGE
PHASE TWO PLAN DATE

WINDCHESTER

20094

A.E.C.S.

ADMINISTRATIVE
1. THE ENGINEERING FIRM FOR THIS STRUCTURAL DESIGN IS
ALLEN ENGINEERING AND CONSTRUCTION SERVICES, INC.
HEREIN REFERRED TO AS "A AEC S OR "A.E.C.S".

2. THE ENGINEER FOR THIS STRUCTURAL DESIGN IS RICHARD E. ALLEN, PE. HEREIN REFERRED TO AS "STRUCTURAL

3. THE STRUCTURAL ENGINEER DESIGN NOTES ARE PART OF THE STRUCTURAL DESIGN AND ARE TO BE TAKEN AS TYPICAL REQUIREMENTS UNLESS NOTED OTHERWISE, "UNO", IN THE STRUCTURAL PLANS AND STRUCTURAL DETAILS.

STRUCTURAL PLANS AND STRUCTURAL DETAILS.

4. THE DESIGN SHOWN IN THESE PLANS CONFORM TO THE
STRUCTURAL PROVISIONS OF THE CHAPTER 16 OF THE FLORIDA
BUILDING CODE, SECTION R301 OF THE FLORIDA RESIDENTIAL
BUILDING CODE 2017, THE SECTIONS TITLED "STRUCTURAL" OF
THE FLORIDA EXISTING BUILDING CODE 2017.

5. THE PURPOSE OF THESE PLANS IS TO OBTAIN A BUILDING
PERMIT AND FOR SUBSEQUENT CONSTRUCTION OF THE DESIGN
AS SHOWN. THESE PLANS ARE TO BE CONSIDERED VOID IF WORK
COMMENCES PRIOR TO A PERMIT BEING ISSUED, A CHANGE IN
THE BUILDING CODE OCCURES PRIOR TO THE PLANS BEING COMMENCES PRIOR TO A PERMIT BEING ISSUED, A CHANGE IN THE BUILDING CODE OCCURES PRIOR TO THE PLANS BEING SUBMITTED FOR PERMIT OR AFTER SIX MONTHS OF THE DATE THAT THESE PLANS ARE SIGNED AND SEALED WITHOUT BEING SUBMITTED FOR PERMITTING, WHICHEVER OCCURES FIRST. ONCE SUBMITTED FOR PERMITTING PRIVATE OF THE PRIVATE OF THE STATE OF A BUILDING PERMIT HAS BEEN ISSUED BASED ON THESE PLANS, THE BUILDING DEPARTMENT IS NOT AUTHORIZED TO REISSUE OR TRANSFER BUILDING PERMITS WITHOUT THE EXPRESSED WRITTEN CONSENT OF THE STRUCTURAL ENGINEER.

CONSENT OF THE STRUCTURAL ENGINEER.

6. CONSTRUCTION BASED ON THE STRUCTURAL DESIGN IS TO BE DONE AS SHOWN IN THE PLANS WITHOUT DEVIATION, CHANGE OR OMISSION WITHOUT PRIOR APPROVAL OF THE STRUCTURAL ENGINEER. IF ADDITIONAL DETAIL INFORMATION, OR EXPLANATION IS NEEDED, IT IS TO BE OBTAINED FROM THE STRUCTURAL ENGINEER. THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR ANY ADDITIONAL PARTS OF THESE PLANS, INCLUDING PROVISIONS AS STATED IN ITEM 4.

7. IT IS IMPORTANT TO UNDERSTAND THAT
STRUCTURAL PROVISIONS OF THE BUILDING CODE ARE
COMPLICATED AND THESE PLANS ARE INTENDED TO BE USED BY
AN EXPERIENCED BUILDING CONTRACTOR. PROPERTY OWNERS
OBTAINING OWNER-BUILDER PERMITS ARE PROCEEDING AT
THEIR OWN RISK. THE STRUCTURAL ENGINEER IS NOT
RESPONSIBLE FOR ANY ERRORS OR OMISSIONS BY PROPERTY
OWNERS OF THEIR AGENTS AS A BESILT OF ANY 7. IT IS IMPORTANT TO UNDERSTAND THAT OWNERS OR THEIR AGENTS AS A RESULT OF ANY MISUNDERSTANDING OF THE PLANS THE OTHERWISE WOULD BE UNDERSTOOD BY A LICENSED CONTRACTOR.

8. THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, AND SCHEDULE.

9. THE STRUCTURAL PLANS AND ANY RELEVANT DESIGN DOCUMENTS PRODUCED UNDER THE DIRECT CHARGE OF THE STRUCTURAL ENGINEER AND MAY NOR BE USED BY ANY PERSON OTHER THAN THE CONTRACTED CLIENT AND FOR ANY PURPOSE OTHER THAN THAN THAT STATED IN ITEM 5 ABOVE WITHOUT THE EXPRESSED WRITTEN CONSENT OF THE STRUCTURAL ENGINEER. MOREOVER, NO OTHER ENGINEER OR ARCHITECT IS TO BE DESIGNATED A DELEGATED ENGINEER FOR ANY PURPOSE RELATED TO THESE STRUCTURAL PLANS OR CONSTRUCTION BASED ON THESE PLANS PRIOR TO THE ISSUANCE OF A CERTIFICATE OF COMPLETION OR OCCUPANCY WITHOUT THE EXPRESSED WRITTEN CONSENT OF THE STRUCTURAL ENGINEER.

DESIGN CRITERIA

10. LOAD COMBINATIONS: THIS DESIGN IS BASED ON AN
"ALLOWABLE -STRESS" FORMULATION RELYING ON THE LOAD
COMBINATIONS DEFINED IN FBC 2017 SECTION 1605.3.1 OR
SECTION 1605.3.2 WHERE OMEGA EQUALS 1.3 11. FOUNDATION LOADS: SEE NOTES ON * SITE CONDITIONS, SOILS, AND FOUNDATIONS". 12. FLOOR LIVE LOADS:

RESIDENTIAL ONE AND TWO STORY FAMILY DWELLINGS: ALL LIVE LOADS PER TABLE R301.5 UNINHABITABLE ATTICS WITHOUT STORAGE: 10 PSF UNINHABITABLE ATTICS WITH STORAGE: 20 PSI HABITABLE ATTICS AND SLEEPING AREAS: 30 PSF BALCONIES: 60 PSF DECKS: 40 PSF ALL OTHER ROOMS 40 PSF GUARDRAILS /HANDRAILS :200PSF CONCENTRATED LOAD APPLIED IN ANY DIRECTION.

13. INFORMATION CONTAINED ON A PLAN SHEET WHERE HIS SIGNATURE AND SEAL APPEAR, THAT DOES NOT PERTAIN TO THE RELEVANT STRUCTURAL PROVISIONS AS STATED IN ITEM 4, INCLUDING, BUT NOT LIMITED TO THE BUILDING OCCUPANCY, THE ARCHITECTURAL DESIGN, IT'S BUILDING OCCUPANCY, THE ARCHITECTURAL DESIGN, IT FEATURES, FINISHES (LE, DECORATIVE STUCCO, SIDING, ROOFING, SOFFITS, FLASHING, PAINTING, ETC.) AND THEIR INSTALLATION, DIMENSIONS, AND ANY DESIGN OF FIRE PROTECTION, ELECTRICAL, PLUMBING, AND MECHANICAL

COMPONENTS OR SYSTEMS.
THE ARCHITECTURAL INFORMATION, INCLUDING DIMENSIONS SHOWN IN THESE PLANS AND PROVIDED TO THE ENGINEER.

SITE CONDITIONS

SITE CONDITIONS

18. SITE PLAN AND TOPOGRAPHY
A. THE STRUCTURAL ENGINEER IS NOT A SUVEYOR AND IS
NOT RESPONSIBLE FOR THE SITE PLAN, ESTABLISHING REQUIRED
SET-BACKS, AND LOCATING THE BUILDING ON THE PROPERTY.
B. THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR THE GRADING OF THE SITE OR ITS COMPLIANCE WITH ANY DRAINAGE PLAN WHETHER INDIVIDUAL OR AS A PART OF A MASTER

DRAINAGE PLAN.
C. THE FOUNDATION DESIGN IS BASED ON THESE PRESUMED CONDITIONS INCLUDING THAT DIFFERENTIAL SETTLING DOES NOT EXCEED THE SAFE LIMITS OF THE FOUNDATION DESIGN (INCLUDING STEMWALLS AND MASONRY ABOVE GRADE WALLS) AS STATED IN ITEM 19 BELOW.

D. IT IS IMPORTANT TO KNOW THAT THE FOUNDATION DESIGN BASED ON A PRESUMED ALLOWABLE SOIL BEARING CAPACITY OF 2,000 PSF RELIES ON LESS THAN L/500 (E.G.,0.25 INCHES OVER 10 FEET) OF DIFFERENTIAL SETTLEMENT. CRACKS IN MASONRY WALLS SHOULD BE EXPECTED WHERE DIFFERENTIAL SETTLEMENT EXCEEDS L/150.THIS STATEMENT SHOULD BE TAKEN AS A CAUTIONARY NOTE FOR PROCEEDING WITHOUT A SOILS ANALYSIS AND FOUNDATION RECOMMENDATION BY A GEOTECHNICAL

ENGINEER FOR THE SITE. E. COPIES OF ANY AND ALL REQUIRED COMPACTION TESTS ARE TO BE PROVIDED TO THE BUILDING DEPARTMENT FOR THEIR

STRUCTURAL ELEMENTS
19. FOUNDATION, FOOTING AND GROUND FLOOR SLAB
A. THE FOUNDATION AND FOOTINGS ARE TO BEAR A MINIMUM ON 12 INCHES BELOW GRADE AND ARE TO BE PLACED ON UNDISTURBED SOIL OR FILL COMPACTED TO A MINIMUM OF 95% MODIFIED PROCTOR PURSUANT TO ASTM D 1557 WITH FILL LIFTS LESS THAN 12".

ALL LIVE LOADS PER FBC 2017 TABLE 1607.1 14. ROOF LIVE LOADS: ALL ROOF / WOOD CONSTRUCTION TYPES ARE 30 PSF.

15. DEAD LOADS: FLOOR WOOD FRAME: 35 PSF FOR TILE/MARBLE FLOOR

COVERING, 15 PSF FOR ALL OTHERS. ROOF WOOD FRAME: 25 PSF FOR SHINGLES, 35 PSF FOR TILE

A. WIND LOADS ARE BASED ON THE SPECIFIC REQUIREMENTS AND DEFINITIONS OF FLORIDA RESIDENTIAL BUILDING CODE 2017 EDITION ASCE-7-10.

B. THE COMPONENT AND CLADDING WIND PRESSURES ARE THE MINIMUM REQUIREMENTS FOR STRENGTH AND IMPACT PROTECTION NEEDED FOR SELECTING SATISFACTORY COMPONENTS AND CLADDING, BY OTHERS, FOR THE STRUCTURE.

ENGINEERING BY OTHERS IS PRESUMED ACCURATE AND IS RELIED UPON BY THE STRUCTURAL ENGINEER SOLEY FOR THE PURPOSE OF ACHIEVING COMPLIANCE WITH THE RELEVANT STRUCTURE

20. MIX DESIGNS FOR ALL CONCRETE USED IN THE CONSTRUCTION OF SLAB - ON - GRADE FLOORS SHALL SPECIFY A MINIMUM DESIGN SLAB - ON - GRADE FLOORS SHALL SPECIFY A MINIMUM DESIGN STRENGTH OF 3,000 PSI (20.7 MPa) AT 28 DAYS AND A DESIGN SLUMP NOT TO EXCEED 4 INCHES(102 mm). ON-SITE SLUMPS SHALL NOT EXCEED 5 INCHES (127mm), PROVIDE TOTAL WATER ADDED TO THE MIX INCLUDING PLANT, TRANSIT AND SITE ADDED WATER DOES NOT INCHES THE FOLLOWING PARALYTERS. EXCEED THE FOLLOWING PARAMETERS:

1. FOR MIXES USING NATURAL SANDS: 275 POUNDS PER CUBIC YARD

(33 GALLONS-125L) 2. FOR MIXES USING MANUFACTURED SANDS: 292 POUNDS PER CUBIC YARD (35 GALLONS -132L)

A. IN ADDITION, THE STRUCTURAL ENGINEER IS NOT A CIVIL OR GEOTECHNICAL ENGINEER AND IS NOT RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SITE FOR CONSTRUCTION, INCLUDING ITS TOPOGRAPHY, DRAINAGE AND SUB-SURFACE CONDITIONS (INCLUDING WATER TABLE DEPTH) AND FOR INTERPRETING GEOTECHNICAL DATA COMCEDING THE SUPP INTERPRETING GEOTECHNICAL DATA CONCERNING THE SITE. B. IF SOIL CONDITIONS AT THE SITE APPEAR QUESTIONABLE AS DETERMINED BY THE BUILDING CONTRACTOR OR OWNER BUILDER, A SOILS ANALYSIS SHALL BE PERFORMED BY A LICENSED BUILDER, A SOILS ANALYSIS SHALL BE PERFORMED BY A LICENSED GEOTECHNICAL ENGINEER THAT WILL GIVE SPECIFIC RECOMMENDATIONS FOR A FOUNDATION TYPE. IF THE BUILDING CONTRACTOR OR OWNER-BUILDER DO NOT MAKE THAT DETERMINATION AND A SOILS ANALYSIS IS NOT PERFORMED, THE STRUCTURAL ENGINEER SHALL PROCEED WITH THE DESIGN BASED ON THE PRESUMPTIONS ALLOWED BY THE FEC 2017, SEC. 1804. C. THE DETERMINATIONS OF THE SUITABILITY OF THE SITE FOR CONSTRUCTION (INCLUDING TOPOGRAPHICAL INFORMATION) CONSTRUCTION (INCLUDING TOPOGRAPHICAL INFORMATION) CONSTRUCTION (INCLUDING TOPOGRAPHICAL INFORMATION)
AND THE SOIL CONDITIONS SHALL HAVE BEEN COMPLETED AND
ANY RECOMMENDATIONS RESULTING FROM THAT ANALYSIS SHALL
HAVE BEEN PROVIDED TO THE STRUCTURAL ENGINEER PRIOR TO
THE SIGNING AND SEALING OF THE STRUCTURAL PLANS.
D. IN THE ABSENCE OF GEOTECHNICAL INFORMATION, THE SITE
IS PRESUMED TO HAVE AN ALLOWABLE SOIL BEARING CAPACITY
OF 2000 PSF AND THE TOPOGRAPHY AS IT RELATES TO THE
STRUCTURE IS PRESUMED TO BE THAT SHOWN IN THE PLANS.
B. THE SIZE AND REDUIRED REINFORCEMENT FOR THE FOOTINGS E. THE SIZE AND REQUIRED REINFORCEMENT FOR THE FOOTINGS ARE SHOWN ON THE FOUNDATION PLAN. THE GROUND FLOOR SLAB SHALL BE PLACED OVER A 6 MIL. POLYETHYLENE MOISTURE RETARDER.

I. THE TRUSS SYSTEM DESIGN PROVIDED IN THIS PLAN IS FOR THE USE OF THE TRUSS MANUFACTURER IN DEVELOPING THE ACTUAL ROOF TRUSS SYSTEM DESIGN. IT IS NOT TO BE USED FOR ANY OTHER PURPOSE AS IT IS SUBJECT TO ENGINEERING AND MAY BE DIFFERENT FROM THE FINAL DESIGN. II. MANUFACTURED FLOOR TRUSSES SHALL BE DESIGNED BY A LICENSED TRUSS COMPONENT AND TRUSS SYSTEM ENGINEER ACTING AS A DELEGATED ENGINEER AND WORKING THROUGH A TRUSS MANUFACTURER FOR THIS PURPOSE. THE SELECTION OF THE TRUSS MANUFACTURER IS HEREBY SUBORDINATED TO THE BUILDING CONTRACTOR.

BUILDING CONTRACTOR.

III. THE MANUFACTURED TRUSS DESIGN SHALL INCLUDE
SPECIFYING THE TRUSS TO TRUSS AND TRUSS TO GIRDER
CONNECTIONS ON EITHER THE INDIVIDUAL TRUSS COMPONENT
SHEETS OR THE GIRDER TRUSS COMPONENTS SHEETS AS APPLICABLE , A SPECIFIC HANGER MUST BE SELECTED AND IDENTIFIED ON THE SIGNED AND SEALED COMPONENT SHEETS FOR EACH LOCATION THAT A HANGER IS REQUIRED IN THE

IRUSS SYSTEM.

IV. THE TRUSS PLAN SIGNED AND SEALED BY THE DELEGATED ENGINEER SHALL BE PROVIDED TO AND REVIEWED BY THE STRUCTURAL ENGINEER FOR COMPLYING WITH THE DESIGN INTENT OF THE ORIGINAL PLAN AND FOR ANY CHANGES TO THE "TRUSS TO UNDERLYING STRUCTURE" CONNECTIONS. THIS PLAN MUST BE PROVIDED TO THE STRUCTURAL ENGINEER PRIOR TO CONSTRUCTION ON THE UNDERLYING STRUCTURE AS THE STRUCTURAL ENGINEER RESERVES THE RIGHT TO MAKE STRUCTURAL CHANGES BASED UPON THE FINAL FLOOR TRUSS

F. CONVENTIONAL FRAMED JOISTS WITH A MINIMUM 6 INCH

OVERLAP OF JOINTS.

G. TERMITE TREATMENT OF THE SITE SHALL BE SPECIFIED BY

THE BUILDING CONTRACTOR OR OWNER-BUILDER.

H. SHRINKAGE CONTROL OF THE FLOOR SLAB SHALL BE

ACCOMPLISHED BY 6 INCH BY 6 INCH. W 1.4 BY 14 WHEDED

WIRE FABRIC AS SPECIFIED BY FBC 2017 SECTION 1910.7

WIRE FABRIC AS SPECIFIED BY FBC 2017 SECTION 1910.7

WIRE FABRIC AS SPECIFIED BY FBC 2017 SECTION 1910.7

EXCEPTION 2 OR FIBERMESH ADMIXTURE ASSPECIFIED BY these documents constituted in the second of the second ments of the supports spaced not greater than 3 FET APART (Ide any of the technical of the second ments of the supports spaced not greater than 3 FET APART (Ide any of the technical of the second ments of the second ments of the supports spaced not greater than 3 FET APART (Ide any of the technical of the second ments of the (FOR A FOUR INCH THICK SLAB OR 25 PERCENT OF THE SLAB THICKNESS OTHERWISE) ARE TO BE PROVIDED ACROSS THE WIDTH AND LENGTH OF ANY FLOOR SLAB AT A DISTANCE OF NOT TO EXCEED 30 TIMES THE SLAB THICKNESS. FOR EXAMPLE A FOUR INCH THICK SLAB, CONTRACTION JOINTS SHALL NOT EXCEED 10 FEET ON CENTER EACH WAY, THE CONTRACTION JOINTS ARE OPTIONAL FOR ONE AND TWO STORY FAMILY RESIDENTIAL WHEN WELDED WIRE FABRIC OR FIBERMESH ARE USED IN THE FLOOR SLAB.

MODE! ALLEN ENGINEERING & CONSTRUCTION SERVICES
RICH ALLEN PROFESSION WINDCHESTER

2009 A.E.C.S.

NOTE

STRUCTUR

OING 25 THUNTERS RIDGE BUILDING

DEEB FAMILY HOMES, LTD. CROSSING E RICHEY, FL.

21. FLOORS

A. MANUFACTURED FLOOR TRUSS FRAMING PLAN CONTAINED HEREIN IS FOR THE SOLE PURPOSE OF ILLUSTRATING THE DESIGN INTENT AND FOR PLANNING TO BE USED BY THE TRUSS COMPANY.

1. FLOOR JOISTS ARE SIZED BASED ON THE SOUTHERN PINE COUNCIL SPAN TABLES FOR NO. 2 GRADE DIMENSIONAL LUMBER.

II. FLOOR JOISTS FOR EXTERIOR DECKS SHALL BE PRESSURE TREATED.

B. FOR ALL WOOD FLOORS:

1. THE TRUSS TO WALL CONNECTIONS ARE IDENTIFIED

ON THE FLOOR FRAMING PLAN. II. A STRUCTURAL BAND JOIST IS TO BE PROVIDED ON THE EXTERIOR PERIMETER OF ALL BOTTOM BEARING FLOOR TRUSSES AND JOISTS. THE STRUCTURAL BAND

JOIST IS TO BE FASTENED TO EACH END OF A FLOOR TRUSS OR JOIST WITH A SIMPSON L50 BRACKET USING SIMPSON SHORT 10d COMMON NAILS.

SIMPSON SHOKE ING COMMON NAILS.

III. FLOOR TRUSSES OR JOISTS BEARING ON WOOD WALLS
ARE TO BE SET WITH A MINIMUM OF THREE 10d COMMON
NAILS. (TOE NAILED) TO THE TOP PLATE OF THE WALL.

IV. A MOISTURE BARRIER SHALL BE INSTALLED BETWEEN ANY
INSTREATED WOOD TRUSSES OF JOISTS AND CONCRETE

UNTREATED WOOD TRUSSES OR JOISTS AND CONCRETE

- V. LBDGERS/ NAILERS SHALL BE FASTENED TO WOOD STUDS
 OR BAND JOISTS (NOT SHEATHING) WITH A MINIMUM 2 3/8" X
 5 1/2" LAG BOLTS WITH WASHERS AT EACH STUD INTERSECTION
 ATTICKNEY ON CONTROL AND STALL CONSIST OF BRIESLIDE AT 16 INCHES ON CENTER AND SHALL CONSIST OF PRESSURE TREATED LUMBER 2 PLY 1 1/2" THICK BY A HEIGHT SHOWN IN THE PLANS, FOR CONCRETE OR MASONRY WALLS THE FASTENERS SHALL BE 5/8" X 5 1/2" SIMPSON TITEN HEAD

VI. FLOOR BEAMS

1. BEAMS SUPPORTING FLOOR TRUSSES AND JOISTS ARE TO BE ATTACHED AS SPECIFIED IN THE FLOOR FRAMING PLAN, UNDER NO CIRCUMSTANCES ARE THERE TO BE BUTT JOINTS

2. UNDER NO CIRCUMSTANCES ARE THERE TO BE BUTT JOINTS

BETWEEN THE BEARING POINTS OF ANY PLY OF A MULTIPLE BEAM. THE PLIES ARE TO BE CONTINUOUS BETWEEN BEARING POINTS.

3. MULTIPLE BEAMS CONSISTING OF MANUFACTURED WOOD (I.E. GLULAM, MICROLAM) ARE TO HAVE THE INDIVIDUAL PLIES INTERCONNECTED AS REQUIRED BY THE MANUFACTURERS OPERIOR TO AN ACTUAL OF THE MANUFACTURE OF THE MANUFACTURE OF T

MULTIPLE BEAMS CONSISTING OF DIMENSIONAL LUMBER ARE
 TO HAVE INDIVIDUAL PLIES INTERCONNECTED AS FOLLOWS:
 A. FOR TWO PLY BEAMS- ONE ROW OF 10d GALVANIZED COMMON

NAILS AT 6" O.C. ON EACH SIDE OF THE BEAM B. FOR THREE PLY BEAMS- TWO ROWS OF 16d GALVANIZED COMMON NAILS SPACED AT 6" O.C. (TOP AND BOTTOM) THRU

EACH SIDE OF BEAM.

C. FOR FOUR PLY BEAMS OR LARGER-TWO ROWS OF 1/2" DIAMETER CARRIAGE BOLTS OR ALL THREAD ROD WITH NUTS AND WASHERS SPACED AT 12 INCHES ON CENTER, 2 INCHES FROM THE TOP AND EACH SIDE OF BEAM. BOTTOM EDGES OF THE BEAM.

D. FLOOR SHEATHING: I. ALL FLOOR SHEATHING IS TO BE 3/4" TONGUE AND GROOVE PLYWOOD RATED FOR FLOOR SHEATHING

II. FLOOR SHEATHING SHALL BE FASTENED TO THE FLOOR TRUSSES /JOISTS WITH 10d RING SHANK NAILS AT 6" ON CENTER WITH CONSTRUCTION GRADE ADHESIVE.

III. FLOOR SHEATHING SPECIFIED FOR SEALED EXTERIOR DECKS AND ITS INSTALLATION SHALL BE THE SAME AS THAT FOR INTERIOR APPLICATION EXCEPT PRESSURE TREATED AND THE FASTENERS TO BE GALVANIZED. E. EXTERIOR DECK FLOORING:

E. BATERIOR BECK FLOORING.

1. DECK FLOORING SHALL BE INDIVIDUALLY SPECIFIED ON THE FLOOR FRAMING PLANS AND SHALL BE FASTENED TO THE UNDERLYING PRESSURE TREATED JOISTS WITH 3-3 INCH DECK SCREWS AE EACH FLOORING JOIST INTERSECTION.

A. MASONRY CONCRETE MASONRY UNITS (CMU) SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 1900 PSI.

II. WALL CMU SHALL BE 8 INCH X 16 INCH IN SIZE OR 8 INCH X 8 INCH X 8 INCH FOR EDGE FINISHES.

III. CMU SHALL BE PLACED IN A RUNNING BOND AND THERE SHALL BE PLACED IN A KUNNING BUND AND THERE SHALL BE NO VERTICAL BUTT JOINTS EXCEPT AS SHOWN ON THE FLOOR PLAN FOR CONSTRUCTION JOINTS.

IV. REINFORCED FILLED CELLS AS SHOWN ON THE PLANS SHALL

BE FILLED WITH " FINE" GRADE GROUT, HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3,000 PSI AND 8 TO 11 INCH SLUMP TO ENSURE CONSOLIDATION.

V. BOND BEAMS SHALL BE POURED WITH GROUT MONOLITHICALLY WITH THE FILLED WALL CELLS-NO COLD JOINTS.

VI. VERTICAL STEEL REINFORCEMENT SHALL BE CONTINUOUS

BETWEEN THE MIDDLE AND BOTTOM 1/3 OF THE FOOTING HEIGHT AND END IN THE TOP COURSE OF THE BOND BEAM WITH A STANDARD 10 FNCH 90 DEGREE BEND.

VII. HORIZONTAL REINFORCING STEEL SHALL BE CONTINUOUS, INCLUDING AROUND CORNERS.

VIII. REINFORCING STEEL SPLICES SHALL CONSIST OF WIRE LAPS NO LESS
THAN 40 TIMES THE STEEL BAR DIAMETER (I.E. 25 INCHES FOR #5 REBAR,
15 INCHES FOR #3 REBAR, AND 52 INCHES FOR #7 REBAR)

B. WOOD FAME WALLS:

I. WALL STUD SIZES ARE SHOWN IN THE TYPICAL WALL SECTION.

1. WOOD STUDS IN WALLS SHALL BE SPACED 16 INCHES ON CENTER AND FASTENED TO THE TOP AND BOTTOM PLATES PER THE TOP PLATE SPLICE DETAIL. ALL LOAD BEARING STUDS TO BE SOUTHERN YELLOW PINE #2

2. LOAD BEARING WALLS SHALL HAVE A SINGLE BOTTOM PLATE (PRESSURE TREATED) IN CONTACT WITH MASONRY OR CONCRETE. SEE THE TOP PLATE SPICE DETAIL FOR TOP PLATE NAILING AND SPLICING REQUIREMENTS.

3. THE WOOD STUDS SHALL HAVE A SIMPSON SP2 AT THE TOP PLATE AND A PROPERLY SIZED SPH FOR THE BOTTOM PLATE (I.E. 4" STUD WALL = SPH4,

6" STUD WALL = SPH6)
4. 3 STUD PACK SHALL BE INSTALLED DIRECTLY BENEATH BEARING POINTS
OF ALL GIRDERS AND BEAMS HAVING A GRAVITY LOAD OF UP TO 3,000 LBS.
5. STEEL TUBE COLUMNS SHALL BE INSTALLED IN THE WALL DIRECTLY BENEATH
GIRDERS AND BEAMS HAVING GRAVITY LOADS GREATER THAN 3000 LBS.
6. BASE PLATES SHALL BE FASTENED TO MONOLITHIC FOOTINGS WITH
5/8" X 8 INCH ANCHOR BOLTS OR SIMPSON TITEN HD. CONCRETE BOLTS
OF THE SAME SIZE AT 24 INCHES ON CENTER. ALL CONNECTIONS SHALL BE
MADE WITH 3 INCH SQUARE BY 1/8 INCH THICK WASHERS
7. BASE PLATES BEARING ON WOOD SHALL BE FASTENED WITH 16d COMMON

MADE WITH 3 INCH SQUARE BY 1/8 INCH THICK WASHERS

7. BASE PLATES BEARING ON WOOD SHALL BE FASTENED WITH 16d COMMON NAILS AT 8" O.C. THROUGH ANY FLOOR SHEATHING AND TO UNDERLYING LUMBER (NOT SHEATHING ONLY) AND USE BLOCKING AS NEEDED TO

LUMBER (NOT SHEATHING ORLT) AND OSE BEOCKING ITS RESEARCH
MAINTAIN NAILING SPACING REQUIREMENTS.

8. FOR EXTERIOR LOAD BEARING WALLS, EACH STUD ABOVE THE BASE PLATE
SHALL BE FASTENED TO THE UNDERLYING BAND JOIST OR BEAM WITH A
SIMPSON LSTAIS STRAP, FOR THIS SITUATION THE SIMPSON SPH BRACKET

TO THE BASE PLAN MAY BE OMITTED.

9. FOR INTERIOR LOAD BEARING WALLS, 1/2 INCH ALL THREAD ROD SHALL BE INSTALLED AT 32" O.C. FROM THE BASE PLATE THROUGH THE SHEATHING AND TOP PLATE OF UNDERLYING SUPPORTING WALL, ALL CONNECTIONS

AND 10F PLATE OF DIMERLING SOFT TO STATE WASHER.
SHALL INCLUDE A STANDARD 3 INCH SQUARE WASHER.
10. HEADER BEAMS SHALL BE SIZED ACCORDING TO THE ENCLOSED HEADER SCHEDULE AND FASTENED WITH A MINIMUM OF TWO SIMPSON LISTADE STATES. STRAPS OVER EACH END TO THE JACK STUDS BELOW. IN ADDITION, THE HEADER BEAMS SHALL BE FASTENED WITH A MINIMUM OF 3-10d COMMON NAILS (TOE NAILED ON EACH FACE SIDE AT EACH END TO THE ABUTTING

III. NON LOAD BEARING WALLS:

I. WOOD STUDS IN WALLS SHALL BE SPACED AT 16 INCHES ON CENTER AND FASTERNED TO THE TOP AND BOTTOM PLATES WITH A MINIMUM OF THREE FASTERNED TO THE TOP AND BOTTOM PLATES WITH A MINIMUM OF THREE 10d COMMON NAILS. NAILS INSTALLED IN PRESSURE TREATED WOOD SHALL

INCIDENTAL, NON STRUCTURAL FRAMING ITEMS SUCH AS KNEE WALLS, DROP CEILINGS, BUILT IN SHELVING, NICHES, ETC. MAY BE CONSTRUCTED WITH 2 X 4'S AT 24" O.C. AT THE DISCRETION OT THE BUILDER.

2. NON LOAD BEARING WALLS SHALL HAVE A SINGLE BOTTOM PLATE (PRESSURE TREATED AGAINST MASONRY AND CONCRETE) AND A SINGLE TOP PLATE.

3. BASE PLATES SHALL BE FASTENED TO CONCRETE SLABS WITH 1/4 INCH BY 3 1/2 INCH TAPCON SCREWS AT 12 " ON

4. BASE PLATES ON WOOD SHALL BE FASTENED WITH 16d COMMON NAILS AT 8" ON CENTER.

C. SHEATHING

I. PLYWOOD SHEATHING.

1. EXTERIOR WALL SHEATHING COVERED BY AN ARCHITECTURAL
FINISH SHALL BE MINIMUM 7/16 INCH THICK (NOMINAL) 4 PLY
PLYWOOD MANUFACTURED WITH EXTERIOR GLUE.

2. THE LONG SIDE OF THE SHEATHING SHALL BE INSTALLED PERPENDICULAR TO THE WALL STUDS.

3. FASTEN TO STUDS AND BLOCKING WITH 8d RING SHANK NAILS

AT 4 INCHES ON CENTER ALL LOCATIONS.

4. IN ADDITION TO THE REGULAR FASTENING, A SECOND ROW SHALL BE INSTALLED AT THE DOUBLE TOP PLATE AND TO THE LOWEST HORIZONTAL WOOD MEMBER ON AN EXTERIOR WALL.

(LE. SILL PLATE, BAND JOIST)

5. FOR PLYWOOD SHEATHING COVERED WITH A CEMENTITIOUS FINISH ALL BUTT JOINTS NOT ON WALL STUDS SHALL BE BLOCKED WITH 2 X BLOCKING, TOE NAILED AT EACH END TO THE WALL STUDS WITH 3-8d COMMON NAILS.

II. PARTICLE BOARD

1. PARTICLE BOARD IS NOT TO BE USED WITHOUT THE EXPRESS, WRITTEN CONSENT OF THE STRUCTURAL ENGINEER AND THE PROPERTY OWNER.

III. ARCHITECTURAL FINISHES

1. ARCHITECTURAL WALL FINISHES, SUCH AS STUCCO, CEMENTITIOUS COATING, SIDING OR PAINT ARE MENTIONED HERE ONLY FOR THE PURPOSE OF UNDERSTANDING THAT THEIR INSTALLATION AND ASSOCIATED DETAILS ARE NOT THE RESPONSIBILITY OF THE STRUCTURAL ENGINEER.

CONCRETE / MASONRY COLUMNS
 CONCRETE / MASONRY COLUMNS
 MASONRY COLUMNS SHALL BE CONSTRUCTED OF PILASTER CONCRETE
 BLOCK OR FORMED AND POURED. WALL BLOCK SHALL NOT BE USED

FOR MASONRY COLUMNS.

FOR MASUNKY COLUMINS.

II. REINFORCING STEEL SHALL BE GRADE 60 AND HELD IN PLACE BY STIRUPS SPACED AT 12 INCHES ON CENTER VERTICALLY.

III. PILASTER BLOCK COLUMNS SHALL BE FILLED WITH A FINE GROUT HAVING A MINIMUM OF COMPRESSIVE STRENGTH OF 3,000 PSI

IV. FORMED AND POURED COLUMNS SHALL CONSIST OF A MINIMUM TO STATE OF THE ADDRESS OF HIGH CHI ORIDES. SIICH

OF 3,000 PSI CONCRETE, OR IN AREAS OF HIGH CHLORIDES, SUCH AS NEAR THE COAST OR BODIES OF SALT WATER, THE MINIMUM

V. ALL MASONRY COLUMNS SHALL BEGIN AT THE FOUNDATION OR AT A MONOLITHIC FOOTING, IN NO CASE SHALL THERE BE A BREAK OR A COLD JOINT IN THE GROUT OF A COLUMN EXCEPT AT 1 FOOT FROM THE TOP IN PREPARATION FOR INSTALLATION OF A CONCRETE LINTEL.

VI. METAL CONNECTORS AT THE TOP OF THE COLUMN FOR HOLDING WOOD BEAMS OR GIRDERS SHALL BE INSTALLED WITH THE MINIMUM EMBEDMENT OF THE ASSOCIATED FASTENERS FOR THE CONNECTOR AS SHOWN ON THE PLANS.

B. WOOD COLUMNS:

L ALL LOAD BEARING WOOD COLUMNS SHALL BE A MINIMUM OF #2 GRADE PRESSURE TREATED WOOD.

GRADE PRESSURE I REALED WOOD.

II. DIMENSIONAL WOOD COLUMNS OF 4 INCHES BY 4 INCHES IN CROSS SECTION SHALL ONLY BE USED FOR SUPPORTING OPEN WOOD DECKS WHERE THE FLOOR HEIGHT ABOVE THE FLOOR BELOW IS 8 FEBT OR LESS. ALL OTHER DIMENSIONAL WOOD COLUMNS SHALL HAVE A MINIMUM OF 6 INCHES BY 6 INCHES.

6 INCHES BY 6 INCHES.

III. METAL CONNECTORS AT THE BASE AND THE TOP OF WOOD COLUMNS
SHALL BE OF THE TYPE THAT RESISTS TATERAC BOARDS AS WHILL AS UPLIFT
AND GRAVITY LOADS. IN NO VISING THAT STRAIS BE USED UNLESS
SPECIFICALLY SHOWN IN THE PLANS OF CROSS SECTION DETAILS. LIANCE

Authority to proceed with the proc

authority to proceed with the work but does not grant authority to violate, cancel, alter or set aside any of the technical codes

MODE WINDCHESTER

ALLEN ENGINEERING & CONSTRUCTION SERVICES

BUILDING 25
RESERVE AT HUNTERS RIDGE
PHASE TWO

2009

C S

ト 田

CTURAL

ENGINEER

DEEB FAMILY HOMES, LTD.

COMPOSITE COLUMNS

1. A COMPOSITE COLUMN HERE IS DEFINED AS A HOLLOW COLUMN CONSISTING OF ANY MATERIAL SPECIFICALLY DESIGNED BY ITS MANUFACTURER TO BE LOAD BEARING. ANY OTHER TYPE OF HOLLOW COLUMN IS CONSIDERED AN ARCHITECTURAL FINISH INTENDED TO FIT OVER A STRUCTURAL COLUMN AND ITS USE AND DETAILS OF INSTALLATION ARE NOT THE RESPONSIBILITY OF THE

STRUCTURAL ENGINEER.

II. LOAD BEARING COMPOSITE COLUMNS ARE A MANUFACTURED PRODUCT SUBJECT TO THE DESIGN AND LOAD BEARING CAPACITY AS DETERMINED BY THE MANUFACTURER. A SHOP DRAWING OR A LETTER FOR THE INSTALLATION OF THE COLUMN SHALL BE PROVIDED BY THE STRUCTURAL ENGINEER TO SUPPLEMENT THE CONSTRUCTION PLANS AFTER THE SPECIFIC COLUMN AND MANUFACTURER HAVE BEEN IDENTIFIED.

IILIN ALL CASES, THE COLUMN MANUFACTURES INFORMATION SHALL BE PROVIDED TO THE STRUCTURAL ENGINEER BY THE CONTRACTING CLIENT OR HIS AGENT FOR REVIEW PRIOR TO 1TS ACCEPTANCE FOR THE STRUCTURAL DESIGN. THE INFORMATION SHALL INCLUDE THE LATERAL AS WELL AS UPLIFT AND GRAVITY LOAD BEARING CAPACITIES. AND GRAVITY LOAD BEARING CAPACITIES.

D. STEEL TUBE COLUMNS:

L. LOAD BEARING STEEL TUBE COLUMNS SHALL HAVE A MINIMUM WALL

THICKNESS OF 1/4 INCH AND BE MADE OF STEEL WITH A DESIGN YIELD

STRENGTH OF 46 PSI UNLESS OTHERWISE SHOWN IN THE STRUCTURAL DESIGN

II. THE SPECIFIC CONNECTION SCHEME SHALL BE SHOWN IN THE STRUCTURAL

DESIGN OF THE STEEL THE COLUMN IN THE STRUCTURAL D., STEEL TUBE COLUMNS:

DESIGN WHERE THE STEEL TUBE COLUMN IS TO BE INSTALLED.

E. ALORD BEARING ALUMINUM COLUMNS SHALL HAVE A MINIMUM WALL THICKNESS I. LOAD BEARING ALUMINUM COLUMNS SHALL HAVE A MINIMUM WALL THICKNESS

II. ALL FASTENERS AND CONNECTORS FOR ALUMINUM COLUMNS SHALL BE STANLESS STEEL OR MONEL TO AVOID CORROSION DUE TO DISSIMILAR METALS BEING IN CONTACT.

III. THE SPECIFIC CONNECTION SCHEME SHALL BE SHOWN IN THE STRUCTURAL DESIGN WHERE THE ALUMINUM COLUMN IS TO BE INSTALLED.

- 24. ROOF
 A. MANUFACTURED WOOD TRUSSES
 I. THE MANUFACTURED ROOF TRUSS FRAMING PLAN CONTAINED HEREIN IS
 I. THE MANUFACTURED ROOF TRUSS FRAMING PLAN CONTAINED HEREIN IS
 FOR THE SOLE PURPOSE OF ILLUSTRATING THE DESIGN INTENT AND FOR
 PLANNING TO BE USED BY THE TRUSS COMPONENT AND TRUSS SYSTEM
 ENGINEER OF THE TRUSS MANUFACTURER IN DEVELOPING THE ACTUAL
 SYSTEM DESIGN. IT IS NOT INTENDED TO BE USED FOR ANY OTHER PURPOSE
 AS IT IS SUBJECT TO ENGINEERING AND MAY BE DIFFERENT FROM THE FINAL
 DESIGN
- II. MANUFACTURED ROOF TRUSSES SHALL BE DESIGNED BY A LICENSED TRUSS COMPONENT AND TRUSS SYSTEM ENGINEER ACTING AS A DELEGATED ENGINEER AND WORKING THROUGH A TRUSS MANUFACTURER FOR THIS ENGINEER AND WORKING THROUGH A TRUSS MANUFACTURER FOR THIS ENGINEER AND WORKING THROUGH A TRUSS MANUFACTURER FOR THIS ENGINEER AND WORKING THROUGH A TRUSS MANUFACTURER FOR THIS ENGINEER FOR THE STATE OF THE PROPERTY OF THE PROPER

ENGINEER AND WORKING THROUGH A TRUSS MANUFACTURER FOR THIS PURPOSE. THE SELECTION OF THE TRUSS MANUFACTURER IS HEREBY SUBORDINATED TO THE BUILDING CONTRACTOR.

II. THE TRUSS PLAN " SIGNED AND SEALED" BY THE DELEGATED ENGINEER SHALL BE PROVIDED TO AND PRIOR TO CONSTRUCTION OF THE UNDERLYING STRUCTURE AS THE STRUCTURAL ENGINEER RESERVES THE RIGHT TO MAKE STRUCTURAL CHANGES BASED ON THE FINAL FLOOR TRUSS SYSTEM.

VI. THE TRUSS MANUFACTURER SHALL PROVIDE ALL LATERAL BRACING REQUIREMENTS TO THE BUILDING CONTRACTOR. IF NOT, THE BUILDING CONTRACTOR IS TO NOTIFY THE STRUCTURAL ENGINEER FOR GUIDANCE.

V. IN ADDITION TO THE METAL CONNECTORS SHOWN IN THE TRUSS LAYOUT OF THE ORIGINAL PLANS, EACH TRUSS IS TO BE SET ON WOOD FRAME BEARING WALLS OR SILL PLATES WITH 10d COMMON NAILS (TOE-NAILED)

VI. A MOISTURE BARRIER IS TO BE INSTALLED BETWEEN UNTREATED WOOD AND

CONCRETE / MASONRY

23.2 CONVENTIONAL FRAME
 IN ADDITION TO THE METAL CONNECTORS SHOWN IN THE TRUSS LAYOUT OF
THE ORIGINAL PLANS, EACH RAFTER IS TO BE SET ON WOOD FRAME BEARING
WALLS OR SILL PLATES WITH 3- 10d COMMON NAILS (TOE-NAILED)
 ANY WOOD COMING IN CONTACT WITH MASONRY OR CONCRETE IS TO BE
PRESSURE TREATED OR A MOISTURE BARRIER IS TO BE INSTALLED BETWEEN
UNTREATED WOOD AND CONCRETE OR MASONRY.

III. COLLAR TIES ARE TO BE INSTALLED BETWEEN RAFTERS AT 2/3 OF THE RIDGE HEIGHT FROM WHERE THE RAFTERS BEAR ON WALLS. THE COLLAR TIES ARE TO BE FASTENED WITH A MINIMUM OF 4-10d 16 COMMON NAILS (CLINCHED) AT EACH LAP JOINT. EACH RAFTER IS TO BE ATTACHED TO THE RIDGE BEAM WITH A LIGHT AMOUND AS SHOWN IN THE BEAM WITH A LIGHT ANGLE HANGER AS SHOWN IN THE FRAMING PLAN. IN ADDITION, A FLAT METAL STRAP SHALL BB INSTALLED ACROSS THE RIDGE BEAM TO TWO OPPOSING RAFTER. TO BE REVIEWED BY THE STRUCTURAL ENGINEER FOR COMPLYING WITH THE DESIGN INTENT OF THE ORIGINAL PLAN AND FOR ANY CHANGES TO THE "TRUSS TO THE UNDERLYING STRUCTURE" CONNECTIONS.

IV. AS PART OF THE REVIEW, THE STRUCTURAL ENGINEER WILL DETERMINE WHITHER THE TRUSS TO WALL/BEAM METAL CONNECTORS SHOWN IN THE ORIGINAL PLANS ARE ACCEPTABLE ON MINISTER THEY MEET TO THE CHANGE OF MINISTER THEY MEET TO THE OR WHETHER THEY NEED TO BE CHANGED OR SUPPLEMENTED TO ACCOMMODATE THE LOADS SHOWN IN THE TRUSS COMPONENT

V. THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR VERIFYING THE DIMENSIONAL, ARCHITECTURAL, OR FORM ASPECTS OF THE OF THE TRUSS MANUFACTURERS PLAN WITH THE ORGINAL PLANS.

VI. THE MINIMUM LIVE LOADS FOR THE ROOF TRUSS DESIGN IS TO BE ON FBC 2017 SECTION 1607 FOR ROOF TYPE AND ROOFING MATERIAL.

ON FBC 2017 SECTION 1607 FOR ROUT 11TE AND ROUTING AIR TERRIAL.
VII. THE DEAD LOADS ARE LASTED IN ITEM 16 ABOVE.
VIII. ALL TRUSS TO TRUSS AND TRUSS TO GIRDER CONNECTORS ARE TO
BE SPECIFIED BY THE TRUSS MANUFACTURED, INCLUDING
CONNECTORS FOR TRUSS TO MANUFACTURED BEAM (I.E. GLUELAM, CONNECTORS FOR TRUSS TO MANUFACTURED BEAM (I.E. GLUELA OR MICROLAM) SPECIFIED BY THE TRUSS MANUFACTURER. A SPECIFIC HANGER MUST BE SELECTED AND IDENTIFIED ON THE SIGNED AND SEALED COMPONENT SHEETS FOR EACH LOCATION, A HANGER IS REQUIRED IN THE TRUSS SYSTEM.

IX. THE TRUSS PLAN SIGNED AND SEALED BY THE DELEGATED ENGINEER SHALL BE PROVIDED TO AND REVIEWED BY THE STRUCTURAL ENGINEER FOR COMPLYING WITH THE DESIGN INTENT OF THE ORGINAL PLAN AND FOR ANY CHANGES TO THE

STRUCTURAL ENGINEER FOR CONFLITAGE WITH THE DESIGNATION OF THE ORGINALPLAN AND FOR ANY CHANGES TO THE "TRUSS TO UNDERLYING STRUCTURE" CONNECTIONS. THIS PLAN MUST BE PROVIDED TO THE STRUCTURAL ENGINEER.

X. A RIDGE BEAM TERMINATING AT A GABLE END SHALL BE SUPPORTED BY A MINIMUM 3 STUD PACK COLUMN BEARING ON THE UNDERLYING WITH OR BEAM.

WALL OK BEAM.

XI. TREATED LUMBER-DOUBLE 1 1/2 INCH BY A HEIGHT SHOWN ON THE PLANS. FOR CONCRETE OR MASONRY WALLS THE FASTENERS SHALL BE 5/8 INCH BY 5 1/2 INCH SIMPSON TITEN HD CONCRETE BOLTS.

XII. SLEEPERS SHALL BE FASTENED TO UNDERLYING ROOF TRUSSES

OR RAFTERS (NOT SHEATHING) WITH A MINIMUM OF 2-3/8 INCH BY 3 1/2 INCH LAG BOLTS AND WASHERS AT EACH TRUSS OR RAFTER INTERSECTION AND NO GREATER THAN 24 INCHES ON CENTER AND SHALL CONSIST OF DIMENSIONAL LUMBER 1 1/2 INCH THICK BY A WIDTH SHOWN IN THE PLANS.

XIII. USE 2 INCH BY 4 INCH BLOCKING ATTACHED BETWEEN UNDERLYING STUDS, TRUSSES OR RAFTERS WITH A MINIMUM OF 3-10d NAILS AT EACH IN ORDER TO SATISFY THE ON CENTER SPACING FOR THE LEDGERS OR SLEEPERS.

XIV BEAMS SUPPORTING ROOF TRUSSES OR RAFTERS ARE TO BE ATTACHED AS SPECIFIED IN THE ROOF FRAMING PLANS.

24. UNDER NO CIRCUMSTANCES ARE THERE TO BE BUTT JOINTS BETWEEN THE PROPERTY OF A SUPPLY OF A

THE BEARING POINTS OF ANY PLY OF A MULTIPLE BEAM. THE PLIES ARE TO BE CONTINUOUS BETWEEN BEARING POINTS.

A. LBDOERS/ SLEEPERS

I. LEDGERS / NAILERS SHALL BE FASTENED TO WOOD STUDS (NOT SHEATHING)
WITH A MINIMUM OF 2-3/8 INCH BY 5 1/2 INCH LAG BOLTS WITH WASHERS
AT EACH STUD INTERSECTION AND NO GREATER THAN 16 INCHES ON CENTER AND SHALL CONSIST ON PRESSURE TREATED WOOD.

II. MULTIPLE BEAMS CONSISTING OF MANUFACTURED WOOD (I.E. GLUELAM, MICROLAM) ARE TO HAVE THE INDIVIDUAL PLIES INTERCONNECTED AS REQUIRED BY THE MANUFACTURERS SPECIFICATIONS.

III. MULTIPLE BEAMS CONSISTING OF DIMENSIONAL LUMBER ARE TO HAVE THE INDIVIDUAL PLIES INTERCONNECTED

AS FOLLOWS:

I. FOR TWO PLY BEAMS - ONE ROW OF 10d GALVANIZED COMMON NAILS AT 6 INCHES ON CENTER ON EACH SIDE OF BEAM.

II. FOR THREE PLY BEAMS - TWO ROWS OF 16d GALVANIZED COMMON NAILS AT 6" ON CENTER (TOP AND BOTTOM)

THELL BACH SIDE OF THE BEAM. THRU EACH SIDE OF THE BEAM.

HILFOR FOUR PLY BEAMS AND LARGER- TWO ROWS OF 1/2 INCH DIAMETER CARRIAGE BOLTS OR ALL THREAD RODS WITH NUTS AND WASHERS SPACED AT 12" ON CENTER 2 INCHES FROM THE TOP AND BOTTOM EDGES OF THE BEAM.

B. SHEATHING:

I. ROOF SHEATHING COVERED BY COMPOSITE ROOFING SHALL BE A MINIMUM OF 15/32 INCH THICK (NOMINAL) O.S.B.

MANUFACTURED WITH EXTERIOR GLUE.

II. ROOF SHEATHING COVERED BY TILE SHALL BE A MINIMUM
OF 5/8 INCH THICK (NOMINAL) MANUFACTURED WITH EXTERIOR

III. THE LONG SIDE OF THE SHEATHING SHALL BE INSTALLED PERPENDICULAR TO THE ROOF TRUSS SYSTEM.

IV. FASTENING SHALL BE 8d RING SHANK NAILS AT 4 INCHES ON

CENTER AT BOUNDARY AND EDGES AND 6 INCHES ON CENTER IN THE FIELD WITH A SETBACK OF 5 '-O' FROM ALL EDGES.

V. METAL "H' CLIPS OR SOLID WOOD BLOCKING SHALL BE USED.

AT ALL UNSUPPORTED BUTT JOINTS BETWEEN TRUSSES OR RAFTERS.

A. PRECAST AND PRESTRESSED CONCRETE LINTELS SHALL BE
MANUFACTURED BY CASTCRETE AND INSTALLED PER MANUFACTURES
SPECIFICATIONS AND INSTRUCTIONS.

P. THE SIZE AS THE LINTELS SHALL BE DESCRIBED ON SWINGE SHALL BE S

B. THE SIZE OF THE LINTELS SHALL BE BASED ON THE SPAN AND LOAD. REFER TO THE ATTACHED SCHEDULE UNLESS OTHERWISE SHOWN IN THE STRUCTURAL DESIGN FOR THE SPECIFIED LINTEL

C. LINTEL SCHEDULE U.N.O. ON PLANS:

1. SPAN UP TO 3'- 8F8-0B

II. SPAN UP TO 3' TO < 6' - 8F8-OB

III. SPAN 6' TO > 14' - 8F16- 1B/1T
D. THE MINIMUM SPECIFIED GROUT COMPRESSIVE STRENGTH TO BE USED

FOR LINTELS IS 3,000 PSI.

E. THE REINFORCING STEEL SHALL BE ASTM GRADE 60 26. FASTENERS / METAL CONNECTORS.

A. ALL FASTEMERS AND METAL CONNECTORS SHALL BE MANUFACTURED BY SIMPSON STRONG TIE AND INSTALLED PER THE MANUFACTURES SPECIFICATIONS AND INSTRUCTIONS.

B. THESE FASTENERS DO NOT INCLUDE TYPICAL NAILS AND SCREWS WHICH

MAY BE MANUFACTURED BY OTHERS.
C. FOLLOW ALL MANUFACTURES SPECIFICATIONS AND INSTRUCTIONS FOR ALL FASTENERS, METAL CONNECTIONS, SCREWS, NAILS, ETC. THAT ARE IN CONTACT WITH PRESSURE TREATED LUMBER.

27. DIMENSIONAL LUMBER:

A. ALL LOAD BEARING WALLS SHALL BE SOUTHERN YELLOW PINE #2 OR BETTER GRADED AND STAMPED BY THE CERTIFYING AGENCY. IN ADDITION, ALL WOOD SHALL BE PRESSURE TREATED FOR EXTERIOR USE WHERE EXPOSED TO MOISTURE, PLACED WITHIN 12 INCHES OF SOULOR PLOAD THAT WITH CONCRETE OF MASONING. SOIL OR IN CONTACT WITH CONCRETE OR MASONRY.

A. ALL SHEATHING USED FOR EXTERIOR APPLICATIONS SHALL BE EXTERIOR GRADE AND ADA STAMPED AND VERIFYING ITS RATING. 28. STRUCTURAL SHEATHING:

A. CONCRETE MASONRY UNITS SHALL CONFORM WITH AMERICAN MASONRY INSTITUTE STANDARD 530

B. CONCRETE MASONRY UNITS SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 1900 PSI

C. MORTAR SHALL BE OF TYPE M OR S GRAY MORTAR.

30. GROUT:
A. ALL GROUT SHALL BE A FINE TYPE HAVING A MINIMUM COMPRESSIVE
STRENGTH OF 3,000 PSI UNLESS SPECIFICALLY SHOWN OTHERWISE BY
STRENGTH OF 3,000 PSI UNLESS SPECIFICALLY SHOWN OTHERWISE BY
A MANUFACTURER PURSUANT TO VICE WITH ITS PRODUCTS.

31. REINFORCING STEEL: APPROVAL OF THE CODE COMPREDITE OR ADDITION OF THE STRENGS OF THE WISE WORN THE SHALL BE USED FOR GRADE BEANS, AND THE STRUCTURAL PLANSE ASIDE ANY OF THE WISE WOWN UT does not IN THE STRUCTURAL PLANSE ASIDE ANY Of the technical codes

MODE WINDCHESTER

A.E.C.S. 20094

ENGINEER

BUILDING 25 RESERVE AT HUNTERS R PHASE TWO

DATE

DEEB FAMILY HOMES, LTD.

32. STRUCTURAL STEEL AND CONNECTION ACCESSORY MATERIAL: A. I-BEAMS, FORMED STRUCTURAL STEEL, FLAT BAR OR PLATE SHALL BE ASTM GRADE A36 UNLESS STATED OTHERWISE. SHALL BE AS IM GRADE AGO UNLESS STATED OTHERWISE.

B. ALL STRUCTURAL STEEL SHALL HAVE A MINIMUM OF TWO
COATS OF PRIMER AND TWO COATS OF EPOXY AS A
CORROSION PREVENTIVE. THE BUILDING CONTRACTOR MAY
VARY FROM THIS SPECIFICATION WITH THE APPROVAL OF THE STRUCTURAL ENGINEER IF IT CAN BE DEMONSTRATED ANOTHER MEANS OF CORROSION CONTROL IS EQUALLY EFFECTIVE.

C. ALL WELDING OF STRUCTURAL STEEL SHALL BE MADE WITH B60/70 TYPE ELECTRODES. THE DEPTH AND LENGTH FOR THE WELD SHALL BE SPECIFIED IN THE STRUCTURAL DESIGN FOR THE 33. VENTILATION: THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR DETERMINING VENTILATION REQUIREMENTS OF CRAWL SPACES, FLOORS AND ATTICS NOR THE MEANS AND METHODS FOR IMPLEMENTING THESE A. ANY RENDERING OF NOTES OF WATERPROOFING MEASURES FOR BASEMENTS OR HALF BASEMENTS SHOWN IN THESE PLANS WHERE A SPECIFIC CONSTRUCTION DETAIL IS NOT SHOWN IN THE STRUCTURAL DESIGN IS AN ARCHITECTURAL ILLUSTRATION ONLY AND IS NOT PART OF THE STRUCTURAL DESIGN OR THE RESPONSIBILITY OF THE STRUCTURAL ENGINEER. B. CRICKETS ARE ASSOCIATED WITH THE ARCHITECTURAL FINISHES AND ARE NOT THE RESPONSIBILITY OF THE STRUCTURAL ENGINEER. A. FIRE RESISTANT DESIGN OF STRUCTURAL ELEMENTS SHALL BE INCIDENTAL TO THEIR STRUCTURAL DESIGN AND SHALL BE BASED ON UNDERWRITERS LABORATORY OR GYPSUM ASSOCIATION DESIGN FOR FIRE RATED FLOOR, WALL AND ROOF ASSEMBLIES. 36. FLOOD RESISTANT DESIGN: FLOOD RESISTANT DESIGN OF FLOOD RESISTANT DESIGN OF STRUCTURAL ELEMENTS SHALL BE INCIDENTAL TO THEIR STRUCTURAL DEIGN AND SHALL BE BASED ON THE REQUIREMENTS STATED IN TITLE 44 CFR SECTIONS 59 AND 60, AND ON THOSE OF THE INDIVIDUAL COMMUNITY RATING AGENCIES FOR THE GOVERNMENTAL JURISDICTION WHERE THE

CONSTRUCTION IS TO BE DONE.

B. HOWEVER, THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR IDENTIFYING AND SHOWING ON THE PLANS THE FLOOD ZONE CATEGORY, BASE FLOOD ELEVATION, AND THE FLOOR AND STORY HEIGHTS OF THE BUILDING IN RELATION TO THE BASE FLOOD ELEVATION. THIS INFORMATION IS CONSIDERED ARCHITECTURAL AND SITE RELATED AND SHALL BE PROVIDED TO THE STRUCTURAL ENGINEER BY THE CONTRACTING CLIENT OR HIS AGENT.

37. SPECIAL CONSTRUCTION:

1. ALUMINUM STRUCTURAL COLUMNS.

A. ANY ALUMINUM STRUCTURES SHOWN IN THESE PLANS SUCH AS PORCH AND POOL ENCLOSURES OR GUARDRAILS AND HANDRAILS ARE FOR ARCHITECTURAL ILLUSTRATION ONLY AND ARE NOT PART OF THE STRUCTURAL DESIGN OR THE RESPONSIBILITY OF THE STRUCTURAL

B. WHERE THE ALUMINUM STRUCTURE ATTACHES TO THE MAIN STRUCTURE OR IS INCORPORATED IN THE MAIN STRUCTURE, SHOP DRAWINGS FOR THESE STRUCTURES SHALL BE PROVIDED TO THE STRUCTURAL ENGINEER TO DETERMINE THEIR EFFECT ON THE MAIN STRUCTURE.

II. SWIMMING POOLS:

A. ANY SWIMMING POOL OR HOT TUBS SHOWN IN THESE PLANS ARE FOR ARCHITECTURAL ILLUSTRATION ONLY AND ARE NOT PART OF THE STRUCTURAL DESIGN OR THE RESPONSIBILITY OF THE STRUCTURAL DESIGN. III. FENCES AND RETAINING WALLS:

A. ANY RENDERING OF FENCES, RETAINING WALLS OR EXTERIOR PLANTERS WHERE A SPECIFIC STRUCTURAL DETAIL IS NOT SHOWN FOR THEIR CONSTRUCTION ARE FOR ARCHITECTURAL ILLUSTRATION ONLY AND ARE NOT THE RESPONSIBILITY OF THE STRUCTURAL ENGINEER.

IV. DRIVEWAYS AND WALKWAYS:

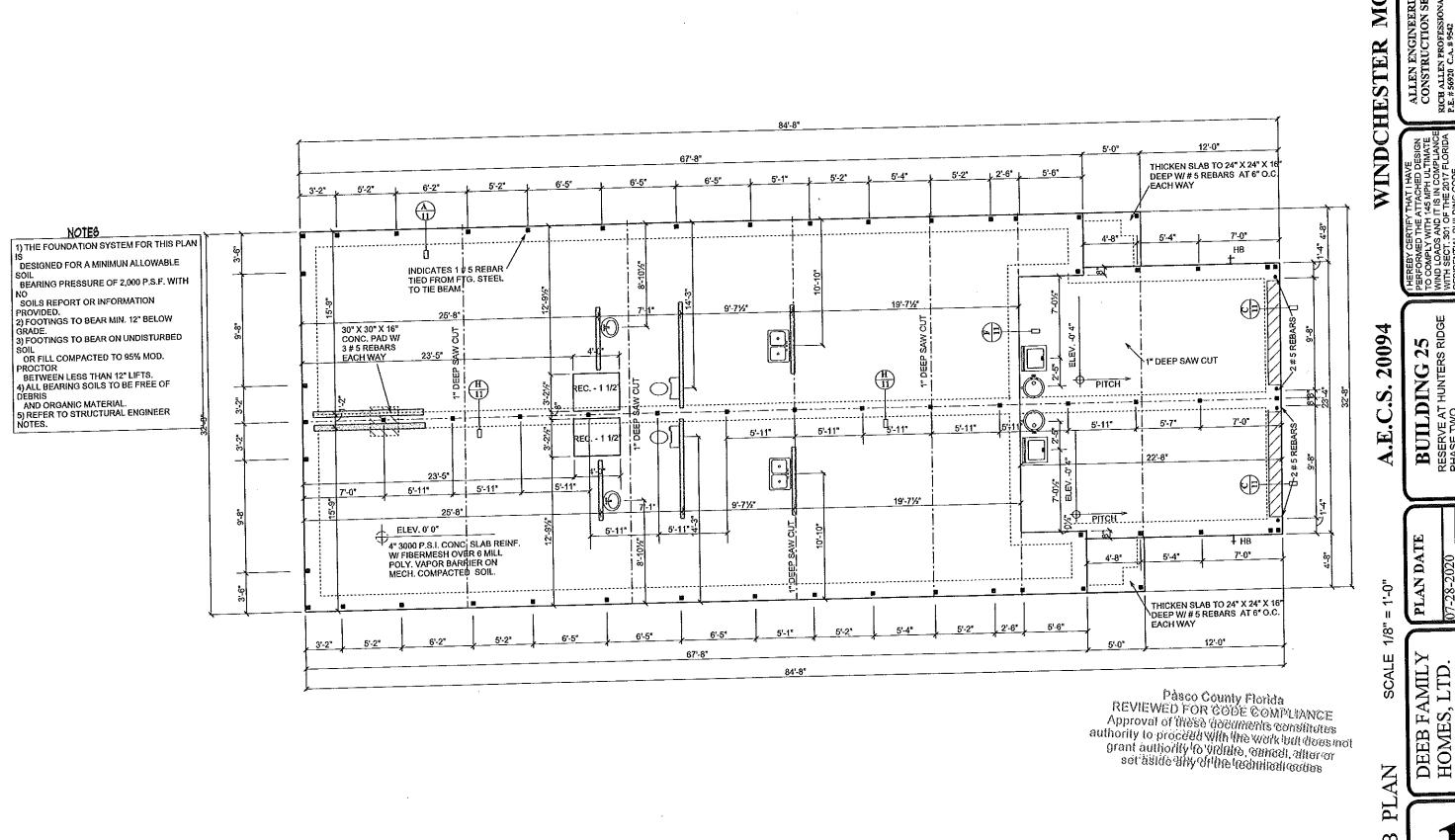
IV. DRIVEWAYS AND WALKWAYS:

A. ANY DRIVEWAYS OR WALKWAYS SHOWN IN THESE PLANS ARE FOR
ARCHITECTURAL ILLUSTRATION PURPOSES ONLY AND ARE NOT PART OF THE
STRUCTURAL DESIGN OR THE RESPONSIBILITY OF THE STRUCTURAL ENGINEER.

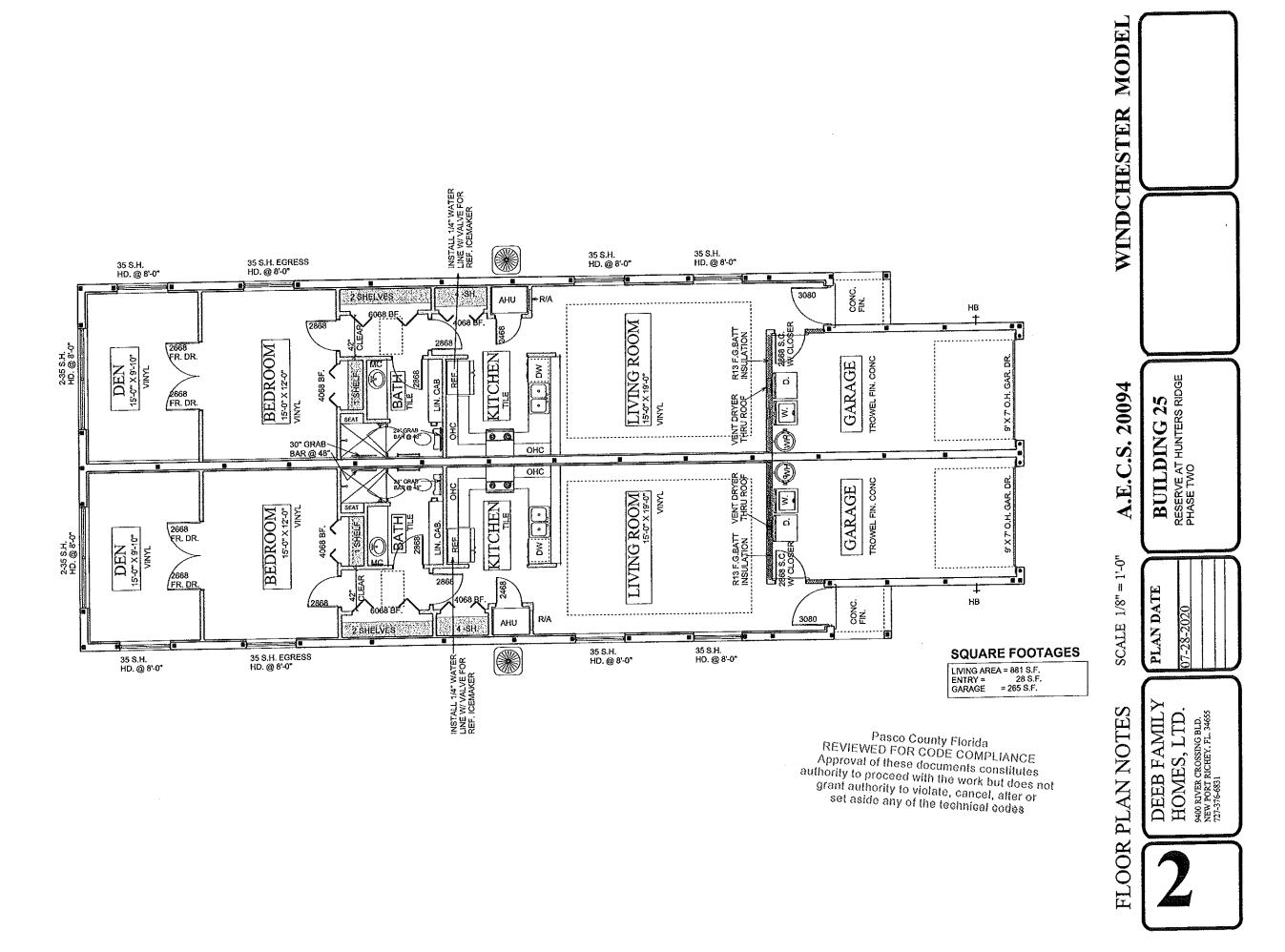
· was calculated using the provisions of the 2017 The info Florida Building Code. Floor and Roof Live Loads 20 psf w/ storage, 10 psf w/o storage Attics: 30 psf Habitable Attics, Bedroom: 40 psf All Other Rooms: 40 psf Garage: 20 psf Roofs: Wind Design Data Nominal Wind Speed: 112 mph Ultimate Wind Speed: 145 mph B Wind Exposure: Risk Category: 4.00 ft. End Zone Width: Enclosure Classification: Enclosed 0.18 + / -Internal Pressure Coefficient: +21.8 psf max., -34.7 psf min. Roof Zone 1: +21.8 psf max., -60.5 psf min. Roof Zone 2: Components and Cladding Design +21.8 psf max., -89.5 psf min. Roof Zone 3: -70.6 psf min. Roof at Zone 2 Overhangs: -118.8 psf min. Roof at Zone 3 Overhangs: +37.9 psf max., -41.1 psf min. Wall Zone 4: +37.9 psf max., -50.7 psf min. Wall Zone 5: +32.1 psf max., -35.9 psf min. 16' X 7' OHGD: The Ultimate Wind Speed was used to determine the above Component and Cladding Design Pressures. All exterior glazed openings shall be protected from wind-borne debris as per Section 1609.1.2 of the code. The site of this building is not subject to special topographic white ffects as per Section 1609.1.1.1 of the code. Geotechnical Information 2,000 psfo/ Design Soil Load-Bearing Capacity: Flood Design Data X Flood Zone:

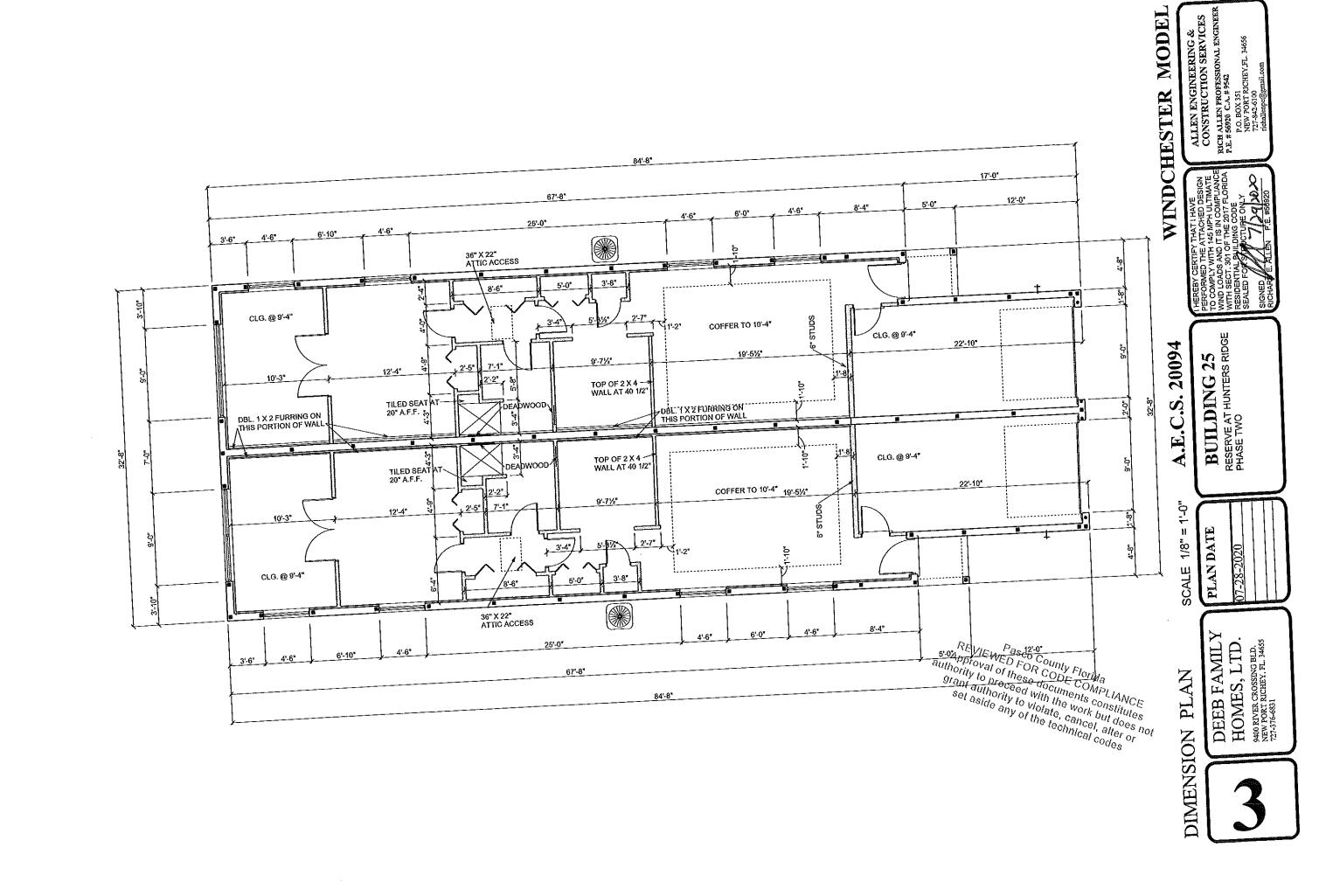
> This table was created using Windload Calculator Plus (Software available at www.windcalcs.com)

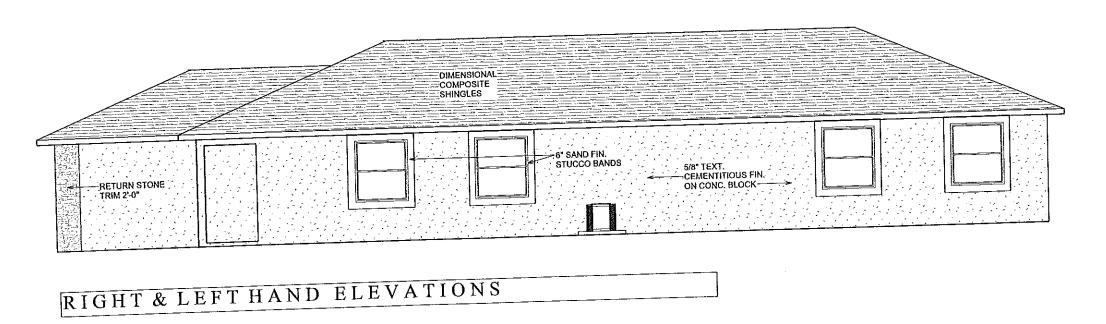
DESIGN LOAD

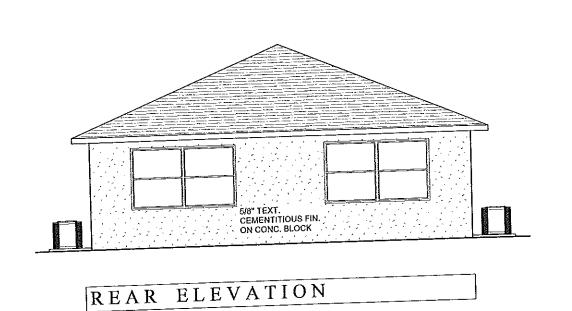

MODE

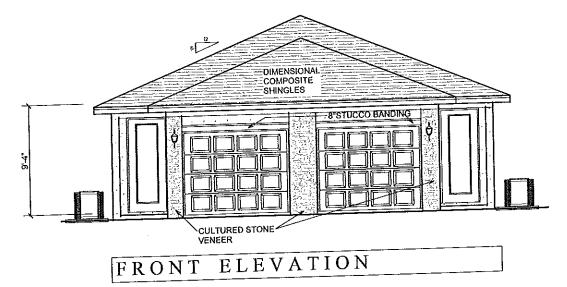
WINDCHESTER

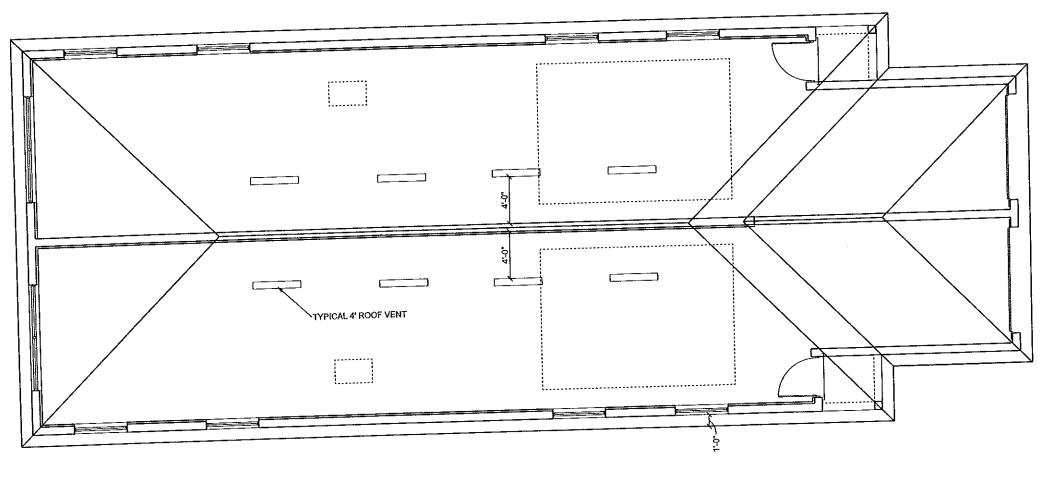

20094


PLAN DATE


DEEB FAMILY HOMES, LTD




BUILDING 25
RESERVE AT HUNTERS RIDGE
PHASE TWO DEEB FAMILY HOMES, LTD. 9400 RIVER CROSSING BLD. NEW PORT RICHEY, FL. 34655 727-376-6831



WINDCHESTER MODEL BUILDING 25
RESERVE AT HUNTERS RIDGE
PHASE TWO SCALE 1/8" = 1'-0A.E.C.S. 20094 PLAN DATE EXTERIOR ELEVATIONS DEEB FAMILY HOMES, LTD. 9400 RIVER CROSSING BLD. NEW PORT RICHEY, FL. 34655 727-376-6831 TOTAL NET FREE VENTILATING AREA SHALL NOT BE LESS THAN 1 TO 300 PROVIDED THAT AT LEAST 50 % AND NOT MORE THAN 80 % IS PROVIDED BY VENTILATORS LOCATED IN THE UPPER PORTION OF THE SPACE TO BE VENTILATED PER SECT. R806.2

TOTAL AREA TO BE VENTILATED = 1174 S.F. 1174/300 = 3.91 S.F. OR 564 SQUARE INCHES.

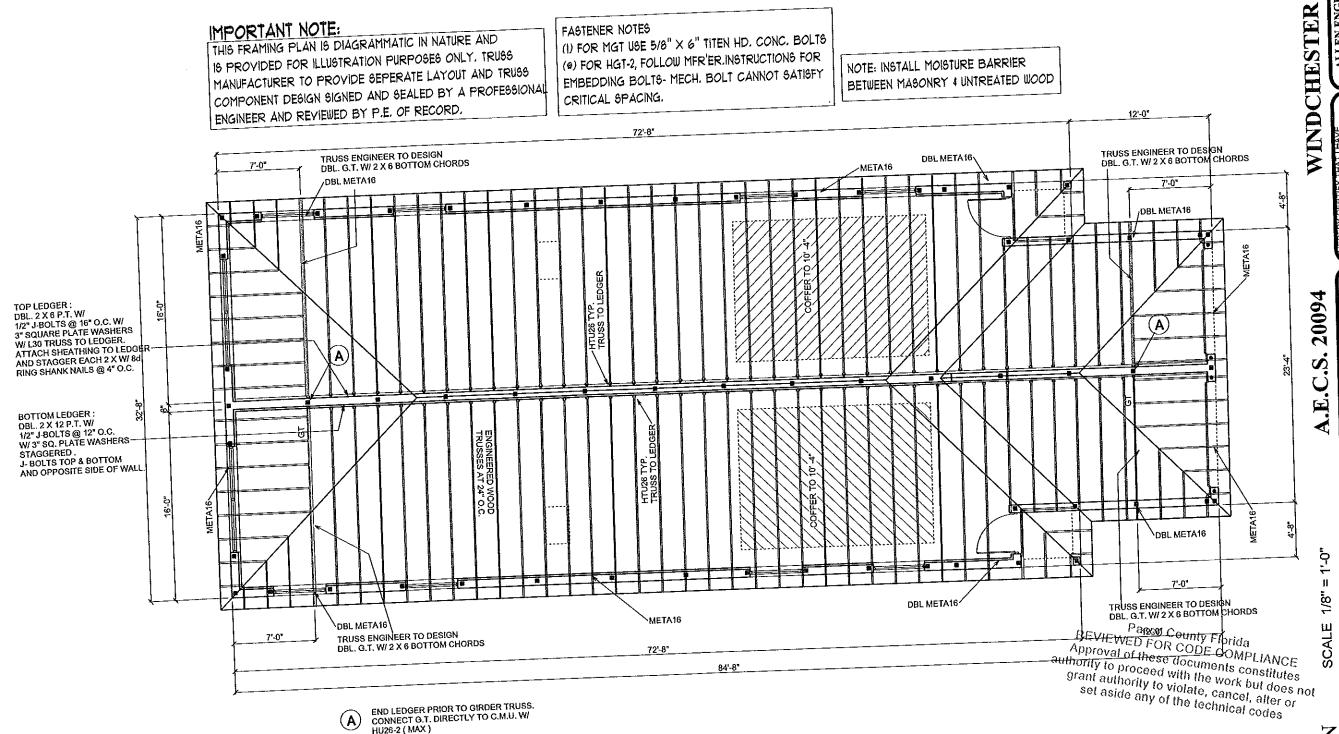
ROOF VENTS ARE RATED AT 36 SQUARE INCHES OF OPENING PER LINEAL FT. 564 S.1/36 S.1. =15.6 'LINEAL FEET REQUIRED.

INSTALLATION FOR THIS ROOF IS 16 OF ROOF VENTING (4-4' VENTS)

Pasco County Florida
REVIEWED FOR CODE COMPLIANCE
Approval of these documents constitutes
authority to proceed with the work but does not
grant authority to violate, cancel, after or
set aside any of the lechnical codes

BUILDING 25
RESERVE AT HUNTERS RIDGE
PHASE TWO A.E.C.S. 20094 = 1'-0" SCALE 1/8" PLAN DATE DEEB FAMILY HOMES, LTD. 9400 RIVER CROSSING BLD. NEW PORT RICHEY, FL. 34655 727-376-6831 **PLAN** ROOF

MODEL


WINDCHESTER

IMPORTANT NOTE:

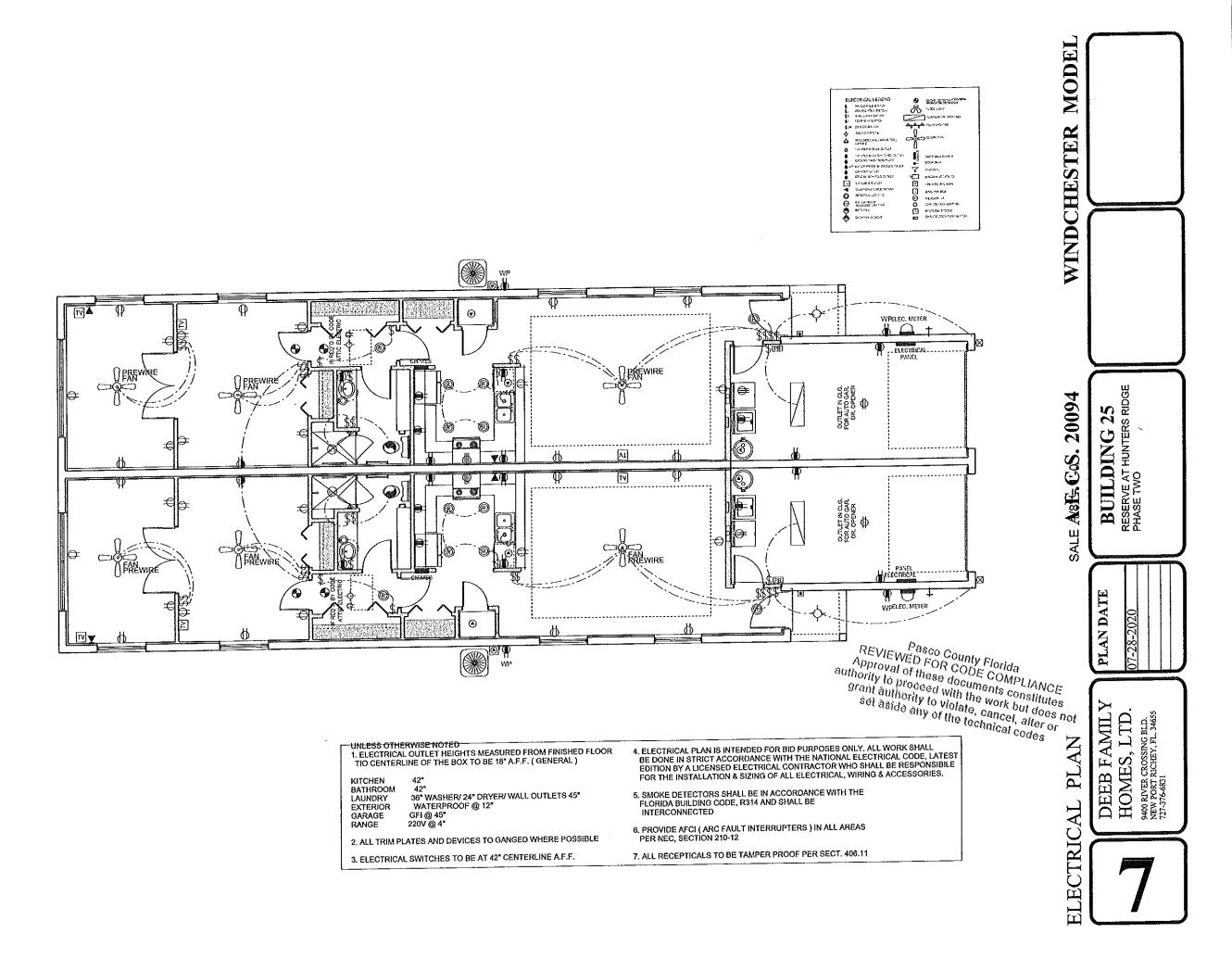
THIS FRAMING PLAN IS DIAGRAMMATIC IN NATURE AND 18 PROVIDED FOR ILLUSTRATION PURPOSES ONLY, TRUSS MANUFACTURER TO PROVIDE SEPERATE LAYOUT AND TRUSS COMPONENT DESIGN SIGNED AND SEALED BY A PROFESSIONAL ENGINEER AND REVIEWED BY P.E. OF RECORD.

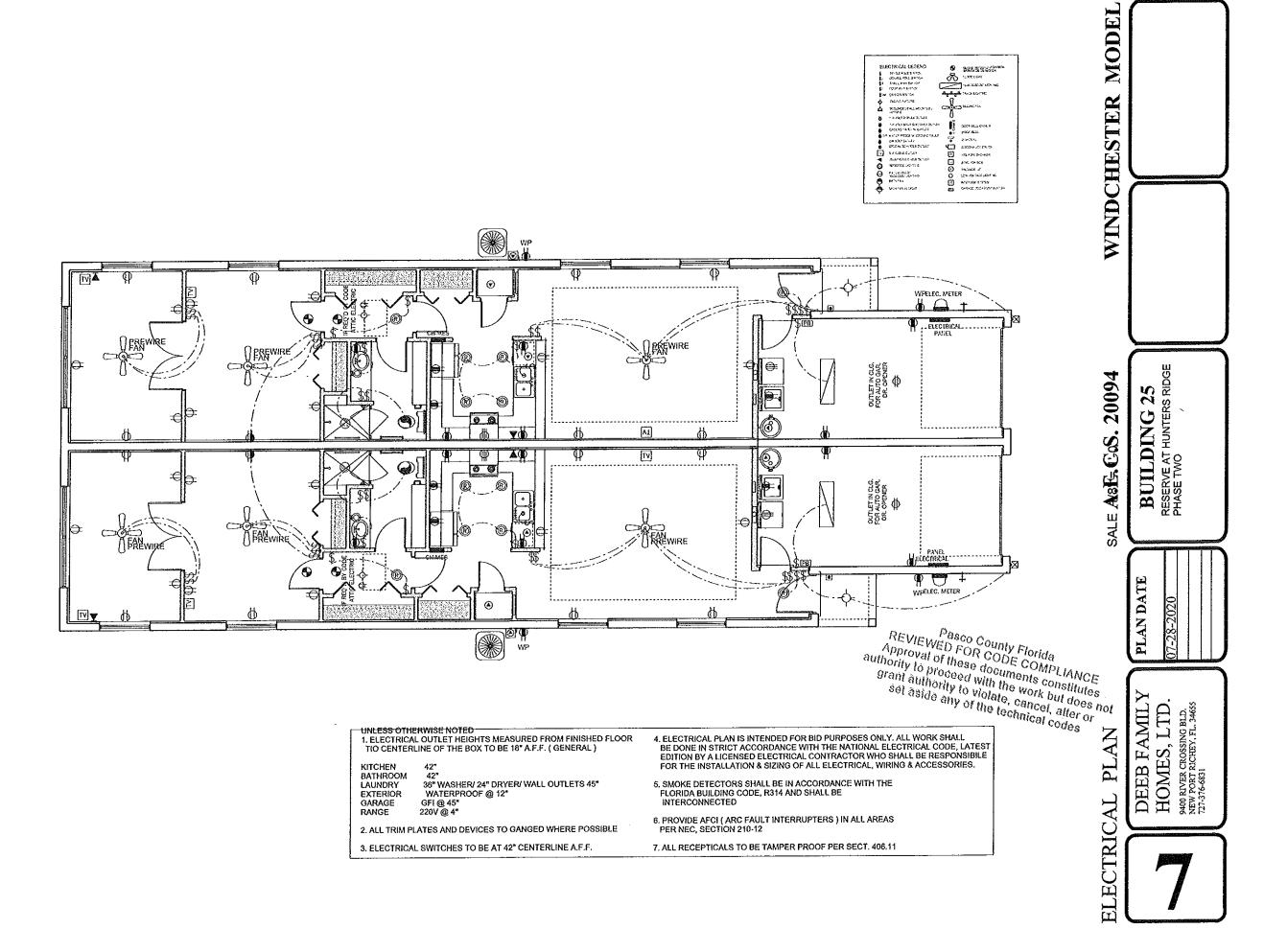
FASTENER NOTES (1) FOR MGT USE 5/8" \times 6" TITEN HD. CONC. BOLTS (@) FOR HGT-2, FOLLOW MFR'ER.INSTRUCTIONS FOR EMBEDDING BOLTS- MECH. BOLT CANNOT SATISFY CRITICAL SPACING.

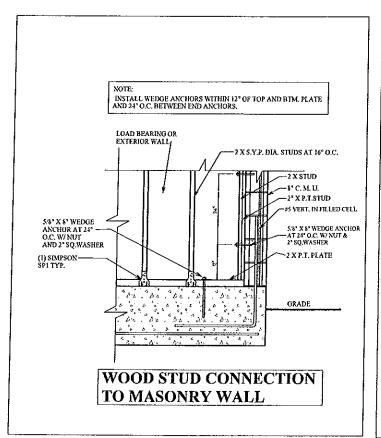
NOTE: INSTALL MOISTURE BARRIER BETWEEN MASONRY & UNTREATED WOOD

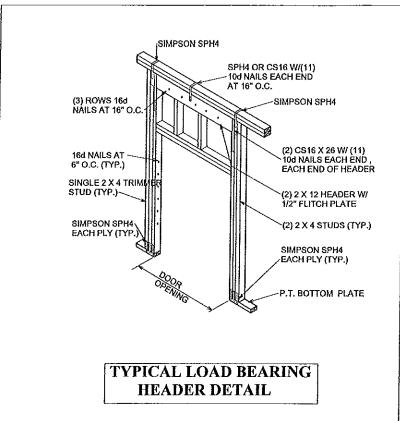
END LEDGER PRIOR TO GIRDER TRUSS. CONNECT G.T. DIRECTLY TO C.M.U. W/ HU26-2 (MAX)

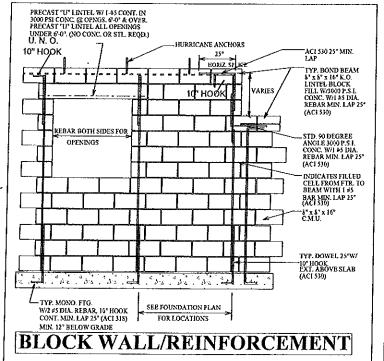
BUILDING 25
RESERVE AT HUNTERS RIDGE
PHASE TWO

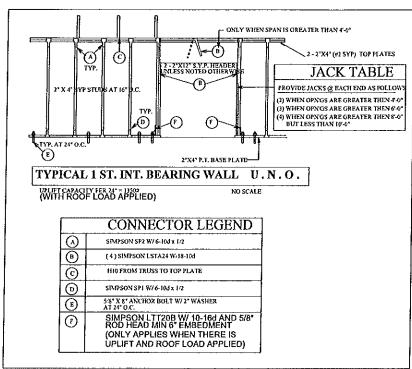

ALLEN ENGINEERING CONSTRUCTION SERV RICH ALLEN PROFESSIONAL EI P.E. # 56920 C.A. # 9542

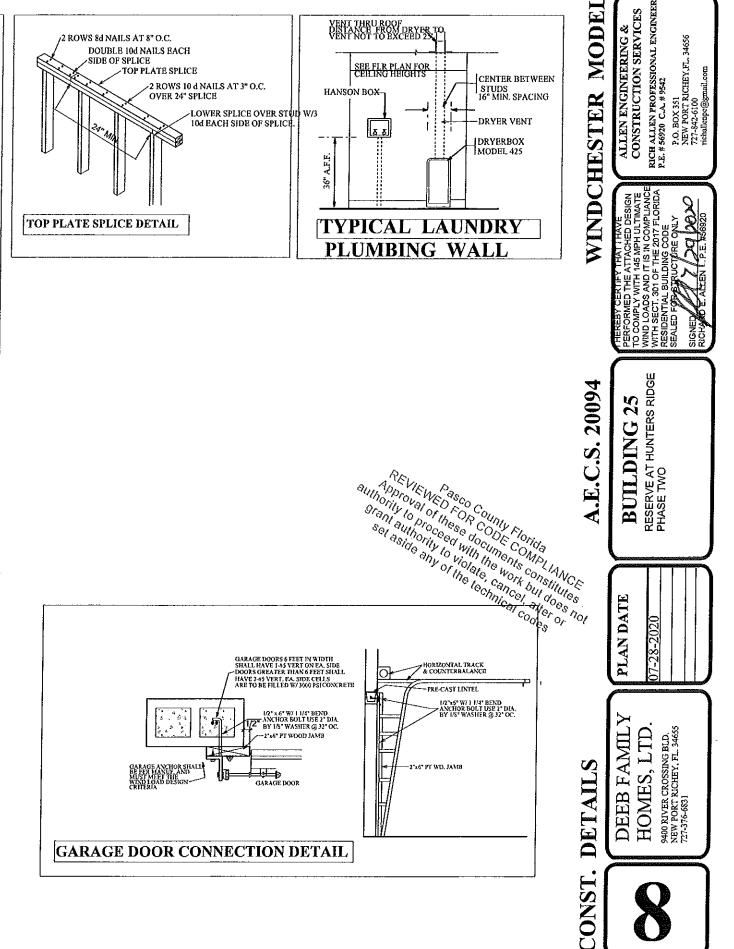

PLAN DATE

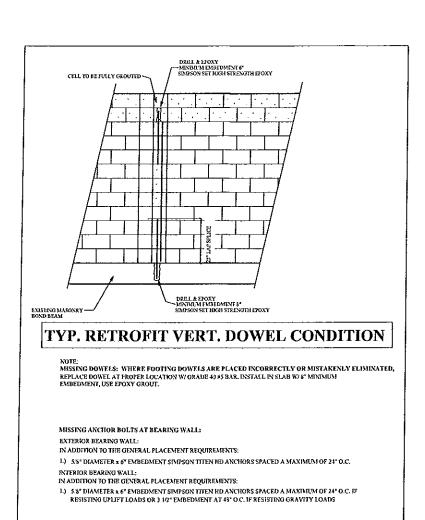

DEEB FAMILY HOMES, LTD.
9400 RIVER CROSSING BLD.
NEW PORT RICHEY, FL. 34655
727-376-6831

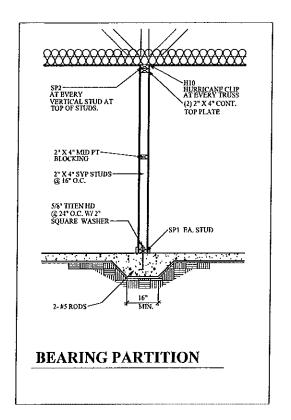

PL

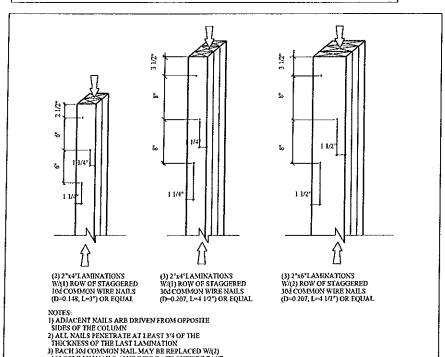


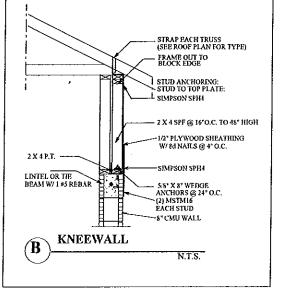


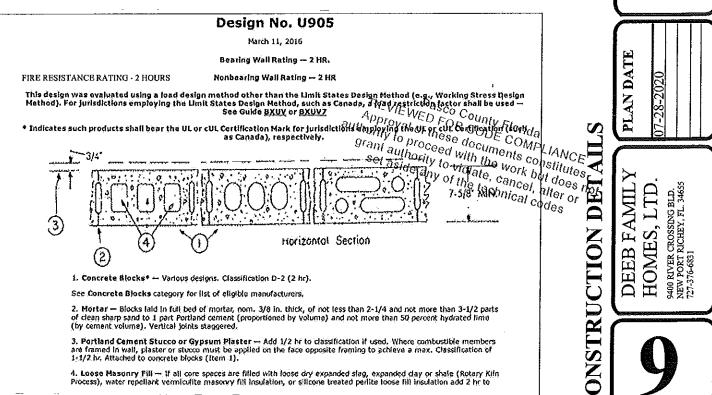








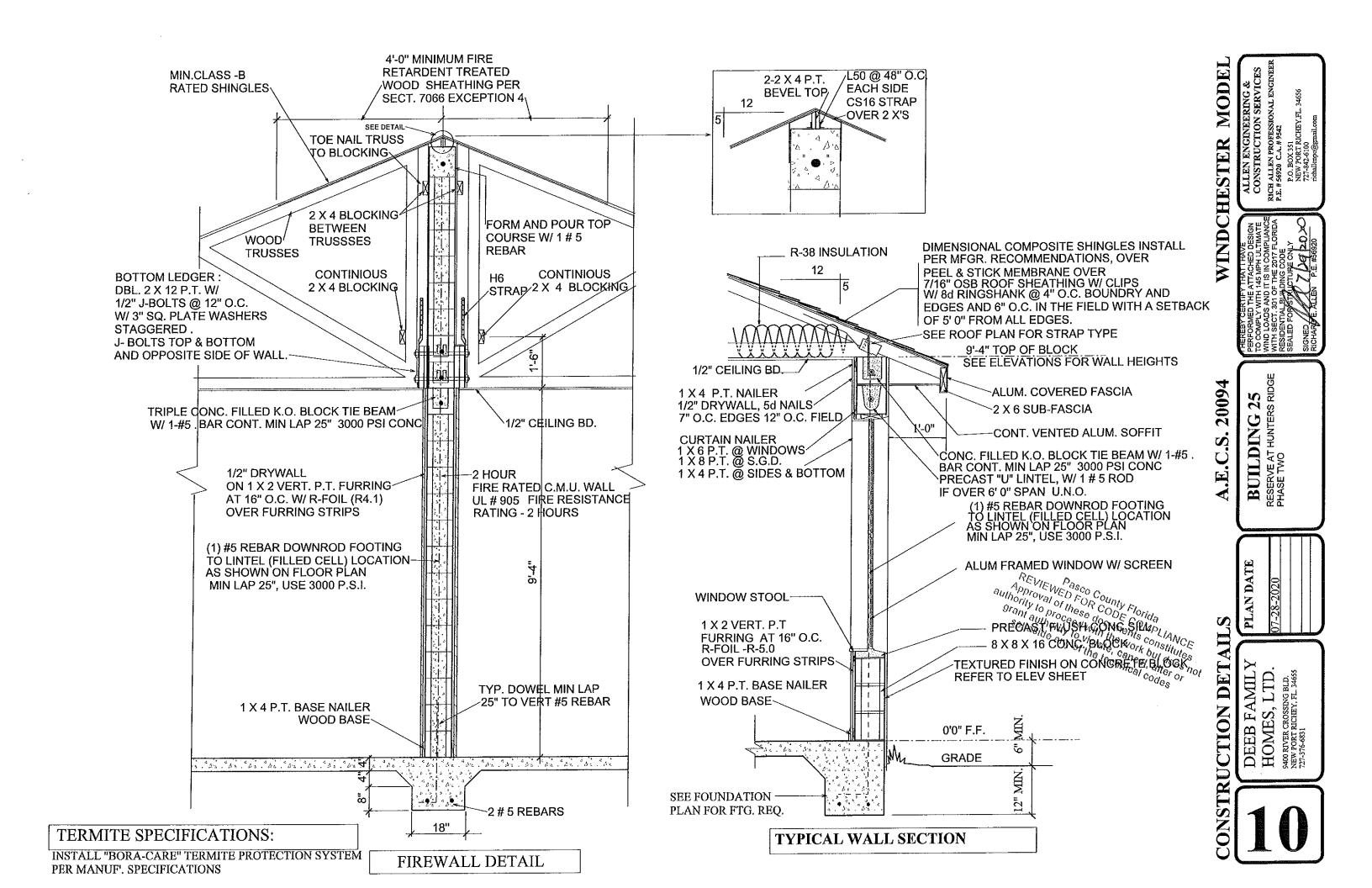


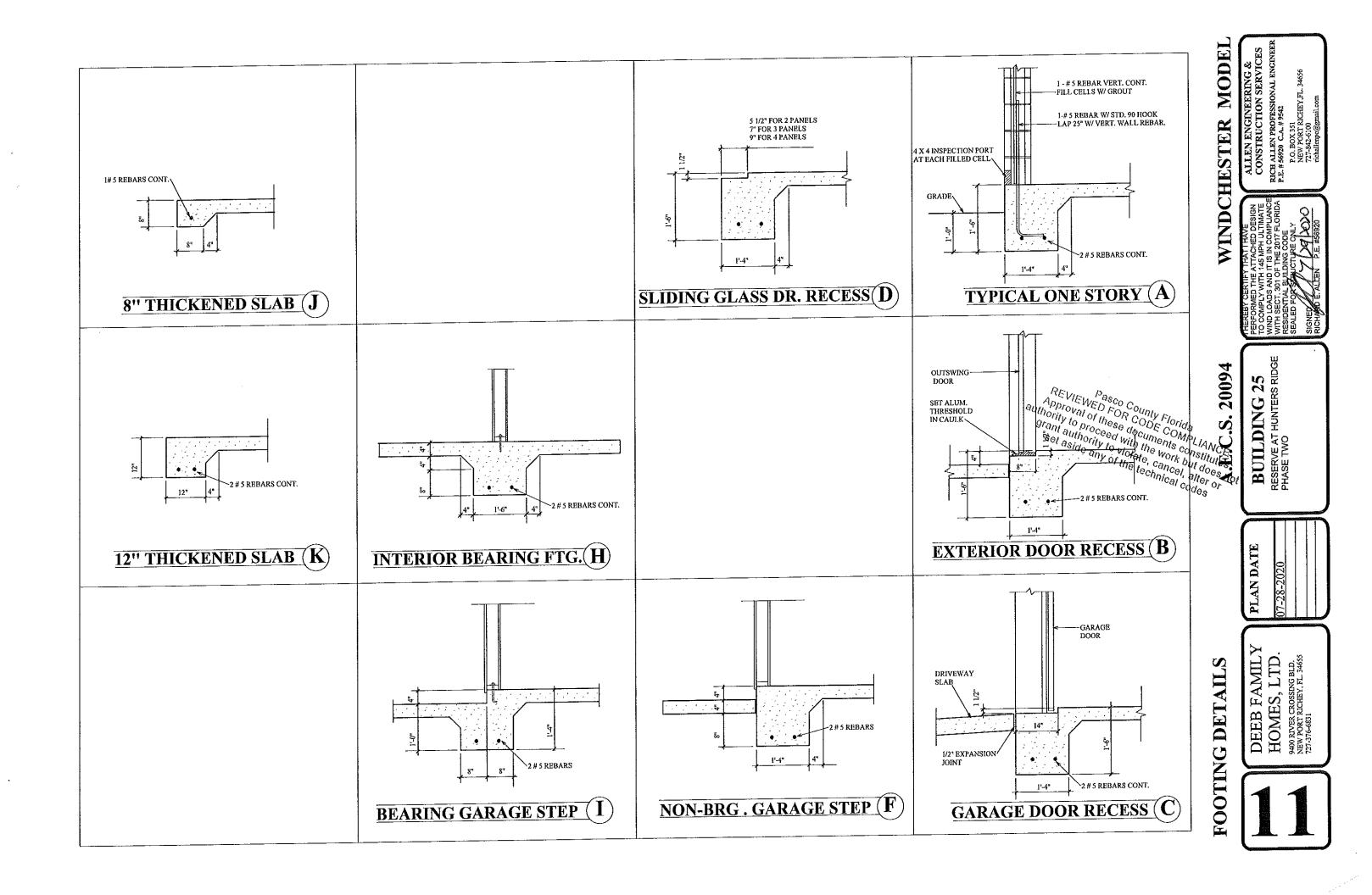


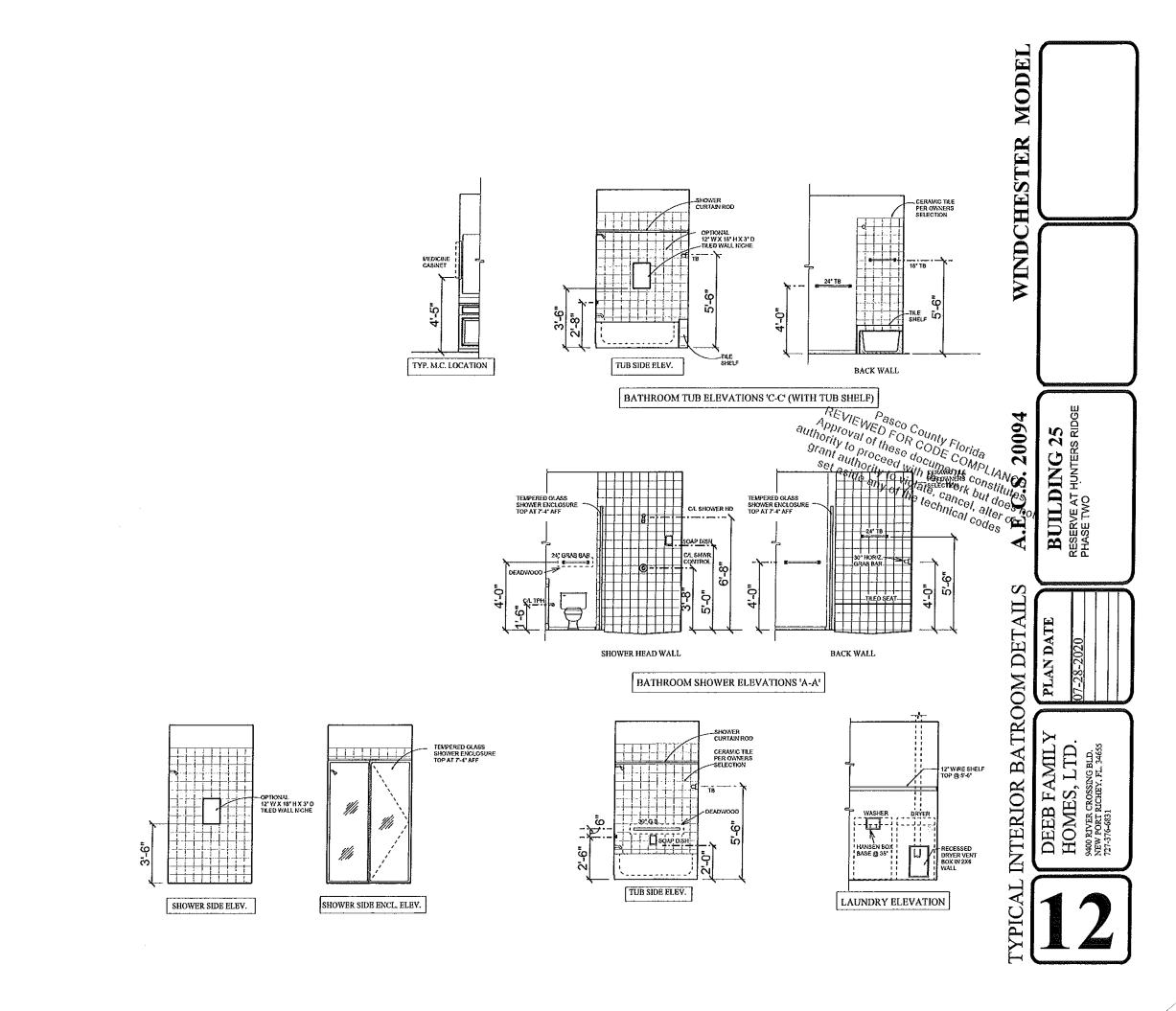
TYP. NAILING SCHEDULE FOR BUILT-UP COLUMNS

3) FACH 3'G COMMON NAIL MAY BE REPLACED W(2)
163 COMMON NAILS, (ONE INTO BEACH OUTSIDE FACE
OF B.U.C. SAME NUMBER OF ROES, SAME SPACING)
4) FOR 4-PLY, PROVIDE 1/4* DIA. X 5 1/2* LAG SCREWS OR EQUAL
(SPACE AS SHOWN FOR 3-PLY)
5) FOR 5-PLY, PROVIDE 1/4* DIA. X 7* LAG SCREWS OR EQUAL

(SPACE AS SHOWN FOR 3-PLY)
6) REFER TO NDS SECTION 15.3 FOR ADDITIONAL INFORMATION




WINDCHESTER


20094

S RIDGE

BUILDING 25 RESERVE AT HUNTERS R

